1887

Abstract

A novel alkaliphilic, sulfate-reducing bacterium, strain MLF1, was isolated from sediments of soda Mono Lake, California. Gram-negative vibrio-shaped cells were observed, which were 0·6–0·7×1·2–2·7 μm in size, motile by a single polar flagellum and occurred singly, in pairs or as short spirilla. Growth was observed at 15–48 °C (optimum, 37 °C), >1–7 % NaCl, w/v (optimum, 3 %) and pH 8·0–10·0 (optimum, 9·5). The novel isolate is strictly alkaliphilic, requires a high concentration of carbonate in the growth medium and is obligately anaerobic and catalase-negative. As electron donors, strain MLF1 uses hydrogen, formate and ethanol. Sulfate, sulfite and thiosulfate (but not sulfur or nitrate) can be used as electron acceptors. The novel isolate is a lithoheterotroph and a facultative lithoautotroph that is able to grow on hydrogen without an organic source of carbon. Strain MLF1 is resistant to kanamycin and gentamicin, but sensitive to chloramphenicol and tetracycline. The DNA G+C content is 63·0 mol% (HPLC). DNA–DNA hybridization with the most closely related species, Z-7951, exhibited 51 % homology. Also, the genome size (1·6×10 Da) and value of the genomic DNA (71±2 °C) for strain MLF1 were significantly different from the genome size (2·1×10 Da) and value (63±2 °C) for Z-7951. On the basis of physiological and molecular properties, the isolate was considered to be a novel species of the genus , for which the name sp. nov. is proposed (the type strain is MLF1=ATCC BAA-395=DSM 14708).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02598-0
2003-09-01
2024-10-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531327.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02598-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  2. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K.editors 1987 Current Protocols in Molecular Biology pp. 2.10–2.11 New York: Wiley;
    [Google Scholar]
  3. Bak F., Pfennig N. 1987; Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189 [CrossRef]
    [Google Scholar]
  4. Castro H. F., Williams N. H., Ogram A. 2000; Phylogeny of sulfate-reducing bacteria. FEMS Microbiol Ecol 31:1–9
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg R. N., Phillips G. B.editors 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Gillis M., De Ley J., De Cleene M. 1970; The determination of molecular weight of bacterial genome DNA from renaturation rates. Eur J Biochem 12:143–153 [CrossRef]
    [Google Scholar]
  8. Hoover R. B., Pikuta E. V., Bej A. K., Marsic D., Whitman W. B., Tang J., Krader P. 2003; Spirochaeta americana sp. nov., a new haloalkaliphilic, obligately anaerobic spirochaete isolated from soda Mono Lake in California. Int J Syst Evol Microbiol 53:815–821 [CrossRef]
    [Google Scholar]
  9. Johnson J. L. 1985; DNA reassociation and RNA hybridization of bacterial nucleic acids. Methods Microbiol 18:33–74
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kevbrin V. V., Zhilina T. N., Rainey F. A., Zavarzin G. A. 1998; Tindallia magadii gen. nov. sp. nov.: an alkaliphilic anaerobic ammonifier from soda lake deposits. Curr Microbiol 37:94–100 [CrossRef]
    [Google Scholar]
  12. Kevbrin V. V., Zhilina T. N., Rainey F. A., Zavarzin G. A. 1999; Tindallia magadiensis gen. nov., sp. nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB List no. 68. Int J Syst Bacteriol 49:1–3 [CrossRef]
    [Google Scholar]
  13. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; mega2: molecular evolutionary genetic analyis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. Pikuta E. V., Hoover R. B. 2001; Sulfate- and sulfur-reducing bacteria as terrestrial analogs for microbial life on Jupiter's satellite Io. In Instruments, Methods, and Missions for Astrobiology IVProceedings of SPIE Conference vol 4495 pp 232–254Edited by Hoover R. B., Levin G. V., Paepe R. R., Rozanov A. Y. San Diego: SPIE;
    [Google Scholar]
  16. Pikuta E. V., Lysenko A. M., Zhilina T. N. 1997; Distribution of Desulfonatronovibrio hydrogenovorans in soda lakes of Tuva. Mikrobiologiya 66:262–268 (in Russian
    [Google Scholar]
  17. Pikuta E. V., Zhilina T. N., Zavarzin G. A., Kostrikina N. A., Osipov G. A., Rainey F. A. 1998; Desulfonatronum lacustre sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Mikrobiologiya 67:123–131 in Russian
    [Google Scholar]
  18. Pikuta E., Lysenko A., Suzina N., Osipov G., Kuznetsov B., Tourova T., Akimenko V., Laurinavichius K. 2000; Desulfotomaculum alkaliphilum sp. nov., a new alkaliphilic, moderately thermophilic, sulfate-reducing bacterium. Int J Syst Evol Microbiol 50:25–33 [CrossRef]
    [Google Scholar]
  19. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Detkova E. N., Whitman W. B., Krader P. 2003; Tindallia californiensis sp. nov., a new anaerobic, haloalkaliphilic, spore-forming acetogen isolated from Mono Lake in California. Extremophiles Online First http://dx.doi.org/10.1007/s00792-003-0326-7
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  21. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae . I. quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–238 [CrossRef]
    [Google Scholar]
  22. Whitman W. B., Ankwanda E., Wolfe R. S. 1982; Nutrition and carbon metabolism of Methanococcus voltae . J Bacteriol 149:852–863
    [Google Scholar]
  23. Widdel F., Hansen T. A. 1992; The dissimilatory sulfate-reducing bacteria. In The Prokaryotes , 2nd edn. vol 1 pp 583–624Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer-Verlag;
    [Google Scholar]
  24. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  25. Zavarzin G. A., Zhilina T. N., Kevbrin V. V. 1999; The alkaliphilic microbial community and its functional diversity. Mikrobiologiya 68:579–599 (in Russian
    [Google Scholar]
  26. Zhilina T. N., Zavarzin G. A., Rainey F., Kevbrin V. V., Kostrikina N. A., Lysenko A. M. 1996; Spirochaeta alkalica sp. nov., Spirochaeta africana sp. nov., and Spirochaeta asiatica sp. nov., alkaliphilic anaerobes from the continental soda lakes in Central Asia and the East African Rift. Int J Syst Bacteriol 46:305–312 [CrossRef]
    [Google Scholar]
  27. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate, reducing bacterium. Int J Syst Bacteriol 47:144–149 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02598-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02598-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error