1887

Abstract

Obligate alkaliphilic strains, AM31D and AM11D, that utilize benzoate and -hydroxybenzoate were isolated from soil obtained from Tsukuba, Ibaraki, Japan. The isolates grew at pH 8–10, but not at neutral pH. They were Gram-positive, facultatively anaerobic, straight rods with peritrichous flagella and produced ellipsoidal spores. The isolates reduced nitrate to nitrite and grew in 0–14 % NaCl, but not in higher concentrations. The major isoprenoid quinones were menaquinone-5, -6 and -7, and the cellular fatty acid profile consisted of significant amounts of 15-C branched-chain acids, isoC and anteisoC. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain AM31D was a member of group 6 (alkaliphiles) in the genus . DNA–DNA hybridization revealed a low relatedness of the isolates with several phylogenetically close neighbours, including and (less than 19·3 %). Based on phenotypic characteristics, phylogenetic data and DNA–DNA relatedness data, it was concluded that these isolates merited classification as a new species, for which the name is proposed. The type strain of this species is AM31D (=NCIMB 13904=JCM 11691=IAM 15000).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02596-0
2003-09-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531531.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02596-0&mimeType=html&fmt=ahah

References

  1. Agnew, M. D., Koval, S. F. & Jarrell, K. F. ( 1995; ). Isolation and characterization of novel alkaliphiles from bauxite processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18, 221–230.[CrossRef]
    [Google Scholar]
  2. Aono, R. ( 1995; ). Assignment of facultative alkaliphilic Bacillus sp. strain C-125 to Bacillus lentus group 3. Int J Syst Bacteriol 45, 582–585.[CrossRef]
    [Google Scholar]
  3. Barrow, G. I. & Feltham, R. K. A. (editors) ( 1993; ). Cowan and Steel's Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press.
  4. Brosius, J., Palmer, J. L., Kennedy, P. J. & Noller, H. F. ( 1978; ). Complete nucleotide sequence of 16S ribosomal RNA gene from Escherichia coli. Proc Natl Acad Sci U S A 75, 4801–4805.[CrossRef]
    [Google Scholar]
  5. Clejan, S., Krulwich, T. A., Mondrus, K. R. & Seto-Young, D. ( 1986; ). Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168, 334–340.
    [Google Scholar]
  6. Duckworth, A. W., Grant, W. D., Jones, B. E. & Steenbergen, R. ( 1996; ). Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Lett 19, 181–191.[CrossRef]
    [Google Scholar]
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  8. Fritze, D. ( 1996; ). Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46, 98–101.[CrossRef]
    [Google Scholar]
  9. Gibson, D. T. & Subramanian, V. ( 1984; ). Microbial degradation of aromatic hydrocarbons. In Microbial Degradation of Organic Compounds, pp. 181–252. Edited by D. T. Gibson. New York: Marcel Dekker.
  10. Horikoshi, K. ( 1991; ). Microorganisms in Alkaline Environments. Weinheim: VCH.
  11. Hugh, R. & Leifson, E. ( 1953; ). The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66, 24–26.
    [Google Scholar]
  12. Kimura, M. ( 1980; ). A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  13. Krulwich, T. A. & Guffanti, A. A. ( 1989; ). Alkalophilic bacteria. Annu Rev Microbiol 43, 435–463.[CrossRef]
    [Google Scholar]
  14. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  15. Mason, J. R. & Cammack, R. ( 1992; ). The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46, 277–305.[CrossRef]
    [Google Scholar]
  16. Nielsen, P., Rainey, F. A., Outtrup, H., Priest, F. G. & Fritze, D. ( 1994; ). Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus. FEMS Microbiol Lett 117, 61–66.[CrossRef]
    [Google Scholar]
  17. Nielsen, P., Fritze, D. & Priest, F. G. ( 1995; ). Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141, 1745–1761.[CrossRef]
    [Google Scholar]
  18. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  19. Spanka, R. & Fritze, D. ( 1993; ). Bacillus cohnii sp. nov., a new obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 40, 92–97.
    [Google Scholar]
  20. Switzer Blum, J., Burns Bindi, A., Buzzelli, J., Stolz, J. F. & Oremland, R. S. ( 1998; ). Bacillus arsenicoselenatis sp. nov., and Bacillus selenitireducence, sp. nov. Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171, 19–30.[CrossRef]
    [Google Scholar]
  21. Takami, H. & Horikoshi, K. ( 1999; ). Reidentification of facultatively alkaliphilic Bacillus sp. C-125 to Bacillus halodurans. Biosci Biotechnol Biochem 63, 943–945.[CrossRef]
    [Google Scholar]
  22. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  23. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  24. Vedder, A. ( 1934; ). Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingbodems. Antonie Leeuwenhoek J Microbiol Serol 1, 143–147.
    [Google Scholar]
  25. Yumoto, I., Yamazaki, K., Sawabe, T., Nakano, K., Kawasaki, K., Ezura, Y. & Shinano, H. ( 1998; ). Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48, 565–571.[CrossRef]
    [Google Scholar]
  26. Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Inoue, N. & Kawasaki, K. ( 2000; ). Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid composition and cell-surface aspects depending on culture pH. Extremophiles 4, 285–290.[CrossRef]
    [Google Scholar]
  27. Yumoto, I., Yamazaki, K., Hishinuma, M., Nodasaka, Y., Suemori, A., Nakajima, K., Inoue, N. & Kawasaki, K. ( 2001; ). Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51, 349–355.
    [Google Scholar]
  28. Yumoto, I., Nakamura, A., Iwata, H., Kojima, K., Kusumoto, K., Nodasaka, Y. & Matsuyama, H. ( 2002; ). Dietzia psychraliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52, 85–90.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02596-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02596-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error