1887

Abstract

Obligate alkaliphilic strains, AM31D and AM11D, that utilize benzoate and -hydroxybenzoate were isolated from soil obtained from Tsukuba, Ibaraki, Japan. The isolates grew at pH 8–10, but not at neutral pH. They were Gram-positive, facultatively anaerobic, straight rods with peritrichous flagella and produced ellipsoidal spores. The isolates reduced nitrate to nitrite and grew in 0–14 % NaCl, but not in higher concentrations. The major isoprenoid quinones were menaquinone-5, -6 and -7, and the cellular fatty acid profile consisted of significant amounts of 15-C branched-chain acids, isoC and anteisoC. Phylogenetic analysis based on 16S rRNA gene sequencing indicated that strain AM31D was a member of group 6 (alkaliphiles) in the genus . DNA–DNA hybridization revealed a low relatedness of the isolates with several phylogenetically close neighbours, including and (less than 19·3 %). Based on phenotypic characteristics, phylogenetic data and DNA–DNA relatedness data, it was concluded that these isolates merited classification as a new species, for which the name is proposed. The type strain of this species is AM31D (=NCIMB 13904=JCM 11691=IAM 15000).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02596-0
2003-09-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531531.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02596-0&mimeType=html&fmt=ahah

References

  1. Agnew M. D., Koval S. F., Jarrell K. F. 1995; Isolation and characterization of novel alkaliphiles from bauxite processing waste and description of Bacillus vedderi sp. nov., a new obligate alkaliphile. Syst Appl Microbiol 18:221–230 [CrossRef]
    [Google Scholar]
  2. Aono R. 1995; Assignment of facultative alkaliphilic Bacillus sp. strain C-125 to Bacillus lentus group 3. Int J Syst Bacteriol 45:582–585 [CrossRef]
    [Google Scholar]
  3. Barrow G. I., Feltham R. K. A.editors 1993 Cowan and Steel's Manual for the Identification of Medical Bacteria , 3rd edn. Cambridge: Cambridge University Press;
    [Google Scholar]
  4. Brosius J., Palmer J. L., Kennedy P. J., Noller H. F. 1978; Complete nucleotide sequence of 16S ribosomal RNA gene from Escherichia coli . Proc Natl Acad Sci U S A 75:4801–4805 [CrossRef]
    [Google Scholar]
  5. Clejan S., Krulwich T. A., Mondrus K. R., Seto-Young D. 1986; Membrane lipid composition of obligately and facultatively alkalophilic strains of Bacillus spp. J Bacteriol 168:334–340
    [Google Scholar]
  6. Duckworth A. W., Grant W. D., Jones B. E., Steenbergen R. 1996; Phylogenetic diversity of soda lake alkaliphiles. FEMS Microbiol Lett 19:181–191 [CrossRef]
    [Google Scholar]
  7. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  8. Fritze D. 1996; Bacillus haloalkaliphilus sp. nov. Int J Syst Bacteriol 46:98–101 [CrossRef]
    [Google Scholar]
  9. Gibson D. T., Subramanian V. 1984; Microbial degradation of aromatic hydrocarbons. In Microbial Degradation of Organic Compounds pp 181–252Edited by Gibson D. T. New York: Marcel Dekker;
    [Google Scholar]
  10. Horikoshi K. 1991 Microorganisms in Alkaline Environments Weinheim: VCH;
    [Google Scholar]
  11. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various Gram-negative bacteria. J Bacteriol 66:24–26
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  13. Krulwich T. A., Guffanti A. A. 1989; Alkalophilic bacteria. Annu Rev Microbiol 43:435–463 [CrossRef]
    [Google Scholar]
  14. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  15. Mason J. R., Cammack R. 1992; The electron-transport proteins of hydroxylating bacterial dioxygenases. Annu Rev Microbiol 46:277–305 [CrossRef]
    [Google Scholar]
  16. Nielsen P., Rainey F. A., Outtrup H., Priest F. G., Fritze D. 1994; Comparative 16S rDNA sequence analysis of some alkaliphilic bacilli and the establishment of a sixth rRNA group within the genus Bacillus . FEMS Microbiol Lett 117:61–66 [CrossRef]
    [Google Scholar]
  17. Nielsen P., Fritze D., Priest F. G. 1995; Phenetic diversity of alkaliphilic Bacillus strains: proposal for nine new species. Microbiology 141:1745–1761 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  19. Spanka R., Fritze D. 1993; Bacillus cohnii sp. nov., a new obligately alkaliphilic, oval-spore-forming Bacillus species with ornithine and aspartic acid instead of diaminopimelic acid in the cell wall. Int J Syst Bacteriol 40:92–97
    [Google Scholar]
  20. Switzer Blum J., Burns Bindi A., Buzzelli J., Stolz J. F., Oremland R. S. 1998; Bacillus arsenicoselenatis sp. nov. and Bacillus selenitireducence sp. nov. Two haloalkaliphiles from Mono Lake, California that respire oxyanions of selenium and arsenic. Arch Microbiol 171:19–30 [CrossRef]
    [Google Scholar]
  21. Takami H., Horikoshi K. 1999; Reidentification of facultatively alkaliphilic Bacillus sp. C-125 to Bacillus halodurans . Biosci Biotechnol Biochem 63:943–945 [CrossRef]
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  23. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  24. Vedder A. 1934; Bacillus alcalophilus n. sp.; benevens enkele ervaringen met sterk alcalische voedingbodems. Antonie Leeuwenhoek J Microbiol Serol 1:143–147
    [Google Scholar]
  25. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H. 1998; Bacillus horti sp. nov., a new Gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48:565–571 [CrossRef]
    [Google Scholar]
  26. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Inoue N., Kawasaki K. 2000; Identification of facultatively alkaliphilic Bacillus sp. strain YN-2000 and its fatty acid composition and cell-surface aspects depending on culture pH. Extremophiles 4:285–290 [CrossRef]
    [Google Scholar]
  27. Yumoto I., Yamazaki K., Hishinuma M., Nodasaka Y., Suemori A., Nakajima K., Inoue N., Kawasaki K. 2001; Pseudomonas alcaliphila sp. nov., a novel facultatively psychrophilic alkaliphile isolated from seawater. Int J Syst Evol Microbiol 51:349–355
    [Google Scholar]
  28. Yumoto I., Nakamura A., Iwata H., Kojima K., Kusumoto K., Nodasaka Y., Matsuyama H. 2002; Dietzia psychraliphila sp. nov., a novel, facultatively psychrophilic alkaliphile that grows on hydrocarbons. Int J Syst Evol Microbiol 52:85–90
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02596-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02596-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error