1887

Abstract

The chloroplast genes of dinoflagellates are distributed among small, circular dsDNA molecules termed minicircles. In this paper, we describe the structure of the non-coding region of the minicircle from . DNA sequence was obtained from five strains obtained from four different coral host species (, , and ), which had previously been determined to be closely related using LSU rDNA region D1/D2 sequence analysis. Eight distinct sequence blocks, consisting of four conserved cores interspersed with two metastable regions and flanked by two variable regions, occurred at similar positions in all strains. Inverted repeats (IRs) occurred in tandem or ‘twin’ formation within two of the four cores. The metastable regions also consisted of twin IRs and had modular behaviour, being either fully present or completely absent in the different strains. These twin IRs are similar in sequence to double-hairpin elements (DHEs) found in the mitochondrial genomes of some fungi, and may be mobile elements or may serve a functional role in recombination or replication. Within the central unit (consisting of the cores plus the metastable regions), all IRs contained perfect sequence inverses, implying they are highly evolved. IRs were also present outside the central unit but these were imperfect and possessed by individual strains only. A central adenine-rich sequence most closely resembled one in the centre of the non-coding part of minicircles, and is a potential origin of replication. Sequence polymorphism was extremely high in the variable regions, suggesting that these regions may be useful for distinguishing strains that cannot be differentiated using molecular markers currently available for .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02594-0
2003-11-01
2020-01-27
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs531725.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02594-0&mimeType=html&fmt=ahah

References

  1. Baker, A. C. ( 2003; ). Flexibility and specificity in coral – algal symbiosis: diversity, ecology, and biogeography of Symbiodinium. Annu Rev Ecol Evol Syst Review in Advance, doi: 10.1146/annurev.ecolsys.34.011802.132417.
    [Google Scholar]
  2. Barbrook, A. C. & Howe, C. J. ( 2000; ). Minicircular plastid DNA in the dinoflagellate Amphidinium operculatum. Mol Gen Genet 263, 152–158.[CrossRef]
    [Google Scholar]
  3. Barbrook, A. C., Symington, H., Nisbet, R. E. R., Larkum, A. & Howe, C. J. ( 2001; ). Organisation and expression of the plastid genome of the dinoflagellate Amphidinium operculatum. Mol Genet Genomics 266, 632–638.[CrossRef]
    [Google Scholar]
  4. Baillie, B. K., Belda-Baillie, C. A. & Maruyama, T. ( 2000; ). Conspecificity and Indo-Pacific distribution of Symbiodinium genotypes (Dinophyceae) from giant clams. J Phycol 36, 1153–1161.[CrossRef]
    [Google Scholar]
  5. Brown, B. E. ( 1997; ). Coral bleaching: causes and consequences. Coral Reefs 16 (suppl.), S129–S138.[CrossRef]
    [Google Scholar]
  6. Carlos, A. A., Baillie, B. K., Kawachi, M. & Maruyama, T. ( 1999; ). Phylogenetic position of Symbiodinium (Dinophyceae) isolates from Tridacnids (Bivalvia), Cardiids (Bivalvia), a sponge (Porifera), a soft coral (Anthozoa), and a free living strain. J Phycol 35, 1054–1062.[CrossRef]
    [Google Scholar]
  7. Carter, D. A., Gava, N., Loi, T. H., Loh, W. & Hoegh Guldberg, O. (2000; ). Genetic diversity of symbiotic dinoflagellates (“zooxanthellae”) inhabiting different scleractinian coral species. Australian Society for Microbiology: Annual Scientific Meeting, Cairns Queensland Australia.
  8. Dai, X., Greizerstein, M. B., Nadas-Chinni, K. & Rothman-Denes, L. B. ( 1997; ). Supercoil-induced extrusion of a regulatory DNA hairpin. Proc Natl Acad Sci U S A 94, 2174–2179.[CrossRef]
    [Google Scholar]
  9. Downs, C., Fauth, J., Dustan, P., Bemiss, J. & Woodley, C. ( 2002; ). Oxidative stress and seasonal coral bleaching. Free Radic Biol Med 33, 533.[CrossRef]
    [Google Scholar]
  10. Farah, J. A., Hartsuiker, E., Mizuno, K., Ohta, K. & Smith, G. R. ( 2002; ). A 160-bp palindrome is a Rad50. Rad32-dependent mitotic recombination hotspot in Schizosaccharomyces pombe. Genetics 161, 461–468.
    [Google Scholar]
  11. Fensome, R. A., Taylor, F. J. R., Norris, G., Sarjeant, W. A. S., Wharton, D. I. & Williams, G. L. ( 1993; ). A classification of living and fossil dinoflagellates. In Micropaleontology Special Publication no. 7. Hanover, PA: Sheridan Press.
  12. Francia, M. V., Avila, P., de la Cruz, F. & García Lobo, J. M. ( 1997; ). A hot spot in plasmid F for site-specific recombination mediated by Tn21 integron integrase. J Bacteriol 179, 4419–4425.
    [Google Scholar]
  13. Francia, M. V., Zabala, J. C., de la Cruz, F. & Garcia Lobo, J. M. ( 1999; ). The IntI1 integron integrase preferentially binds single-stranded DNA of the attC site. J Bacteriol 181, 6844–6849.
    [Google Scholar]
  14. Freudenthal, H. D. ( 1962; ). Symbiodinium gen. nov. and Symbiodinium microadriaticum sp. nov., a zooxanthella. Taxonomy, life cycle and morphology. J Protozool 9, 45–52.[CrossRef]
    [Google Scholar]
  15. Goodson, M. S., Whitehead, L. F. & Douglas, A. E. ( 2001; ). Symbiotic dinoflagellates in marine Cnidaria: diversity and function. Hydrobiologia 461, 79–82.[CrossRef]
    [Google Scholar]
  16. Gross, S. R., Levine, P. H., Metzger, S. & Glaser, G. ( 1989; ). Recombination and replication of plasmid-like derivatives of a short section of the mitochondrial chromosome of Neurospora crassa. Genetics 121, 693–701.
    [Google Scholar]
  17. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  18. Hiller, R. G. ( 2001; ). ‘Empty’ minicircles and petB/atpA and psbD/psbE (cytb 559 α) genes in tandem in Amphidinium carterae plastid DNA. FEBS Lett 505, 449–452.[CrossRef]
    [Google Scholar]
  19. Hirao, I., Nishimura, Y., Tagawa, Y., Watanabe, K. & Miura, K. ( 1992; ). Extraordinarily stable mini-hairpins: electrophoretical and thermal properties of the various sequence variants of d(GCGAAAGC) and their effect on DNA sequencing. Nucleic Acids Res 20, 3891–3896.[CrossRef]
    [Google Scholar]
  20. Hoegh-Guldberg, O. ( 1999; ). Coral bleaching, climate change and the future of the world's coral reefs. Mar Freshw Res 50, 839–866.[CrossRef]
    [Google Scholar]
  21. Holmes, A. J., Holley, M. P., Mahon, A., Nield, B., Gillings, M. & Stokes, H. W. ( 2003; ). Recombination activity of a distinctive integron-gene cassette system associated with Pseudomonas stutzeri populations in soil. J Bacteriol 185, 918–928.[CrossRef]
    [Google Scholar]
  22. Howe, C. J., Barbrook, A. C., Koumandou, V. L., Nisbet, R. E. R., Symington, H. A. & Wightman, T. F. ( 2003; ). Evolution of the chloroplast genome. Philos Trans R Soc Lond B Biol Sci 358, 99–106 (discussion pp. 106–107).[CrossRef]
    [Google Scholar]
  23. Hughes, T. P., Baird, A. H., Bellwood, D. R. & 14 other authors ( 2003; ). Climate change, human impacts, and the resilience of coral reefs. Science 301, 929–933.[CrossRef]
    [Google Scholar]
  24. Kawata, M., Harada, T., Shimamoto, Y., Oono, K. & Takaiwa, F. ( 1997; ). Short inverted repeats function as hotspots of intermolecular recombination giving rise to oligomers of deleted plastid DNAs (ptDNAs). Curr Genet 31, 179–184.[CrossRef]
    [Google Scholar]
  25. Kevin, M. J., Hall, W. T., McLaughlin, J. A. & Zahl, P. A. ( 1969; ). Symbiodinium microadriaticum Freudenthal, a revised taxonomic description, ultrastructure. J Phycol 5, 341–350.[CrossRef]
    [Google Scholar]
  26. LaJeunesse, T. C. ( 2001; ). Investigating the biodiversity, ecology, and phylogeny of endosymbiotic dinoflagellates in the genus Symbiodinium using the ITS region: in search of a “species” level marker. J Phycol 37, 866–880.[CrossRef]
    [Google Scholar]
  27. LaJeunesse, T., Loh, W. K. W., van Woesik, R., Hoegh-Guldberg, O., Schmidt, G. W. & Fitt, W. K. ( 2003; ). Low symbiont diversity in southern Great Barrier Reef corals, relative to those of the Caribbean. Limnol Oceanogr 48, 2046–2054.[CrossRef]
    [Google Scholar]
  28. Loeblich, A. R., III & Sherley, J. L. ( 1979; ). Observations on the theca of the motile phase of free-living and symbiotic isolates of Zooxanthella microadriatica (Freudenthal) comb. nov. J Mar Biol Assoc UK 59, 195–205.[CrossRef]
    [Google Scholar]
  29. Loh, W. K. W., Loi, T. H., Carter, D. A. & Hoegh-Guldberg, O. ( 2001; ). Genetic variability of the symbiotic dinoflagellates from the wide ranging coral species Seriatopora hystrix and Acropora longicyathus in the Indo-West Pacific. Mar Ecol Prog Ser 222, 97–107.[CrossRef]
    [Google Scholar]
  30. Lupold, D. S., Caoile, A. G. & Stern, D. B. ( 1999; ). Genomic context influences the activity of maize mitochondrial cox2 promoters. Proc Natl Acad Sci U S A 96, 11670–11675.[CrossRef]
    [Google Scholar]
  31. Mertens, G., Klippel, A., Fuss, H., Blocker, H., Frank, R. & Kahmann, R. ( 1988; ). Site-specific recombination in bacteriophage Mu: characterization of binding sites for the DNA invertase Gin. EMBO J 7, 1219–1227.
    [Google Scholar]
  32. Montresor, M., Procaccini, G. & Stoecker, D. K. ( 1999; ). Polarella glacialis gen. nov., sp. nov. (Dinophyceae): Suessiaceae are still alive! J Phycol 35, 186–197.[CrossRef]
    [Google Scholar]
  33. Pakrasi, H. B. ( 1995; ). Genetic analysis of the form and function of photosystem I and photosystem II. Annu Rev Genet 29, 755–776.[CrossRef]
    [Google Scholar]
  34. Paquin, B. & Lang, B. F. ( 1996; ). The mitochondrial DNA of Allomyces macrogynus: the complete genomic sequence from an ancestral fungus. J Mol Biol 255, 688–701.[CrossRef]
    [Google Scholar]
  35. Paquin, B., Laforest, M. J., Forget, L., Roewer, I., Wang, Z., Longcore, J. & Lang, B. F. ( 1997; ). The fungal mitochondrial genome project: evolution of fungal mitochondrial genomes and their gene expression. Curr Genet 31, 380–395.[CrossRef]
    [Google Scholar]
  36. Paquin, B., Laforest, M. J. & Lang, B. F. ( 2000; ). Double-hairpin elements in the mitochondrial DNA of Allomyces: evidence for mobility. Mol Biol Evol 17, 1760–1768.[CrossRef]
    [Google Scholar]
  37. Pochon, X., Pawlowski, J., Zaninetti, L. & Rowan, R. ( 2001; ). High genetic diversity and relative specificity among Symbiodinium-like endosymbiotic dinoflagellates in soritid foraminiferans. Mar Biol 139, 1069–1078.[CrossRef]
    [Google Scholar]
  38. Rodriguez-Lanetty, M. ( 2003; ). Evolving lineages of Symbiodinium-like dinoflagellates based on ITS1 rDNA. Mol Phylogenet Evol 28, 152–168.[CrossRef]
    [Google Scholar]
  39. Rowan, R. ( 1998; ). Diversity and ecology of zooxanthellae on coral reefs. J Phycol 34, 407–417.[CrossRef]
    [Google Scholar]
  40. Rowan, R. & Powers, D. A. ( 1992; ). Ribosomal RNA sequences and the diversity of symbiotic dinoflagellates (zooxanthellae). Proc Natl Acad Sci U S A 89, 3639–3643.[CrossRef]
    [Google Scholar]
  41. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  42. Santos, S. R., Taylor, D. J., Kinzie, R. A., III, Hidaka, M., Sakai, K. & Coffroth, M. A. ( 2002; ). Molecular phylogeny of symbiotic dinoflagellates inferred from partial chloroplast large subunit (23S)-rDNA sequences. Mol Phylogenet Evol 23, 97–111.[CrossRef]
    [Google Scholar]
  43. Santos, S. R., Gutierrez-Rodriguez, C. & Coffroth, M. A. ( 2003; ). Phylogenetic identification of symbiotic dinoflagellates via length heteroplasmy in domain V of chloroplast large subunit (cp23S)-ribosomal DNA sequences. Mar Biotechnol (NY) 5, 130–140.
    [Google Scholar]
  44. Saunders, G. W., Hill, D. R. A., Sexton, J. P. & Andersen, R. A. ( 1997; ). Small subunit ribosomal RNA sequences from selected dinoflagellates: testing classical evolutionary hypotheses with molecular systematic methods. In Origins of Algae and their Plastids, pp. 237–259. Edited by D. Bhattacharya. Vienna: Springer-Verlag.
  45. Singh, M. ( 2000; ). Turnover of D1 protein encoded by psbA gene in higher plants and cyanobacteria sustains photosynthetic efficiency to maintain plant productivity under photoinhibitory irradiance. Photosynthetica (Prague) 38, 161–169.[CrossRef]
    [Google Scholar]
  46. Smith-Mungo, L., Chan, I. T. & Landy, A. ( 1994; ). Structure of the P22 att site. Conservation and divergence in the lambda motif of recombinogenic complexes. J Biol Chem 269, 20798–20805.
    [Google Scholar]
  47. Stokes, H. W., O'Gorman, D. B., Recchia, G. D., Parsekhian, M. & Hall, R. M. ( 1997; ). Structure and function of 59-base element recombination sites associated with mobile gene cassettes. Mol Microbiol 26, 731–745.[CrossRef]
    [Google Scholar]
  48. Takishita, K., Ishikura, M., Kioke, K. & Maruyama, T. ( 2003; ). Comparison of phylogenies based on nuclear-encoded SSU rDNA and plastid-encoded psbA in the symbiotic dinoflagellate genus Symbiodinium. Phycologia 42, 285.[CrossRef]
    [Google Scholar]
  49. Taylor, D. L. ( 1983; ). The coral algal symbiosis. In Algal Symbiosis, a Continuum of Interaction Strategies. Edited by L. J. Goff. New York: Cambridge University Press.
  50. Thompson, J. D., Gibson, T. J., Plewniak, F., Jeanmougin, F. & Higgins, D. G. ( 1997; ). The Clausal windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 24, 4876–4882.
    [Google Scholar]
  51. Trench, R. K. ( 1993; ). Micro algal-invertebrate symbioses: a review. Endocytob Cell Res 9, 135–175.
    [Google Scholar]
  52. Trench, R. K. ( 1997; ). Diversity of symbiotic dinoflagellates and the evolution of microalgal-invertebrate symbioses. Proceedings of the 8th International Coral Reef Symposium, 24–29 June 1996, Panama, vol. 2, pp. 1275–1286.
  53. Trench, R. K. & Blank, R. J. ( 1987; ). Symbiodinium-microadriaticum Freudenthal Symbiodinium-goreauii new-species Symbiodinium-kawagutii new-species and Symbiodinium-pilosum new-species Gymnodinioid dinoflagellate symbionts of marine invertebrates. J Phycol 23, 469–481.[CrossRef]
    [Google Scholar]
  54. Trench, R. K. & Thinh, L. V. ( 1995; ). Gymnodinium linucheae sp. nov. the dinoflagellate symbiont of the jellyfish Linuche unguiculata. Eur J Phycol 30, 149–154.[CrossRef]
    [Google Scholar]
  55. van Oppen, M. J. H., Palstra, F. P., Piquet, A. M. T. & Miller, D. J. ( 2001; ). Patterns of coral-dinoflagellate associations in Acropora: significance of local availability and physiology of Symbiodinium strains and host-symbiont selectivity. Proc Royal Soc Biol Sci Ser B 268, 1759–1767.[CrossRef]
    [Google Scholar]
  56. Walther, G. R., Post, E., Convey, P., Menzel, A., Parmesan, C., Beebee, T. J., Fromentin, J. M., Hoegh-Guldberg, O. & Bairlein, F. ( 2002; ). Ecological responses to recent climate change. Nature 416, 389–395.[CrossRef]
    [Google Scholar]
  57. Warner, M. E., Fitt, W. K. & Schmidt, G. W. ( 1999; ). Damage to photosystem II in symbiotic dinoflagellates: a determinant of coral bleaching. Proc Natl Acad Sci U S A 96, 8007–8012.[CrossRef]
    [Google Scholar]
  58. Zhang, Z., Green, B. R. & Cavalier-Smith, T. ( 1999; ). Single gene circles in dinoflagellate chloroplast genomes. Nature 400, 155–159.[CrossRef]
    [Google Scholar]
  59. Zhang, Z., Cavalier-Smith, T. & Green, B. R. ( 2002; ). Evolution of dinoflagellate unigenic minicircles and the partially concerted divergence of their putative replicon origins. Mol Biol Evol 19, 489–500.[CrossRef]
    [Google Scholar]
  60. Zuker, M. ( 2003; ). Mfold web server for nucleic acid folding and hybridization prediction. Nucleic Acids Res 31, 3406–3415.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02594-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02594-0
Loading

Data & Media loading...

Supplements

PowerPoint file 

POWERPOINT

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error