sp. nov., a novel nonylphenol-degrading bacterium isolated from a river sediment Free

Abstract

A nonylphenol-degrading bacterial strain (YT) was isolated previously from a river sediment sample obtained in Ami-machi, Ibaraki, Japan, and identified as a species. In this study, the taxonomic relationship between strain YT, a recently described nonylphenol-degrading strain, , and , which is phylogenetically related, was examined. Their phenotypic characteristics were compared and levels of DNA–DNA relatedness between these strains were determined. Based on the results of physiological and biochemical tests and DNA–DNA hybridization, it is proposed that strain YT (=IAM 15006=JCM 11777=CIP 107839) represents a novel species of the genus , sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02581-0
2003-11-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/6/ijs532045.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02581-0&mimeType=html&fmt=ahah

References

  1. Ahel M., Schaffner C., Giger W. 1996; Behaviour of alkylphenol polyethoxylate surfactants in the aquatic environment. III. Occurrence and elimination of their persistent metabolites during infiltration of river water to groundwater. Water Res 30:37–46 [CrossRef]
    [Google Scholar]
  2. Brown R. J., Conradi M., Depledge M. H. 1999; Long-term exposure to 4-nonylphenol affects sexual differentiation and growth of the amphipod Corophium volutator (Pallas, 1766. Sci Total Environ 233:77–88 [CrossRef]
    [Google Scholar]
  3. de Vries Y. P., Takahara Y., Ikunaga Y. 7 other authors 2001; Organic nutrient-dependent degradation of branched nonylphenol by Sphingomonas sp. YT isolated from a river sediment sample. Microb Environ 16:240–249 [CrossRef]
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Fujii K., Urano N., Ushio H., Satomi M., Iida H., Ushio-Sata N., Kimura S. 2000; Profile of a nonylphenol-degrading microflora and its potential for bioremedial applications. J Biochem 128:909–916 [CrossRef]
    [Google Scholar]
  6. Fujii K., Urano N., Ushio H., Satomi M., Kimura S. 2001; Sphingomonas cloacae sp. nov., a nonylphenol-degrading bacterium isolated from wastewater of a sewage-treatment plant in Tokyo. Int J Syst Evol Microbiol 51:603–610
    [Google Scholar]
  7. Giger W., Brunner P. H., Schaffner C. 1984; 4-Nonylphenol in sewage sludge: accumulation of toxic metabolites from nonionic surfactants. Science 225:623–625 [CrossRef]
    [Google Scholar]
  8. Heinis L. J., Knuth M. L., Liber K., Sheedy B. R., Tunell R. L., Ankley G. T. 1999; Persistence and distribution of 4-nonylphenol following repeated application to littoral enclosures. Environ Toxicol Chem 18:363–375 [CrossRef]
    [Google Scholar]
  9. Ikemoto S., Kathoh K., Komagata K. 1978; Cellular fatty acid composition in methanol-utilizing bacteria. J Gen Appl Microbiol 24:41–49 [CrossRef]
    [Google Scholar]
  10. Kim S.-J., Chun J., Bae K. S., Kim Y.-C. 2000; Polyphasic assignment of an aromatic-degrading Pseudomonas sp., strain DJ77, in the genus Sphingomonas as Sphingomonas chungbukensis sp. nov. Int J Syst Evol Microbiol 50:1641–1647 [CrossRef]
    [Google Scholar]
  11. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  12. Kinnberg K., Korsgaard B., Bjerregaard P., Jespersen A. 2000; Effects of nonylphenol and 17 beta-estradiol on vitellogenin synthesis and testis morphology in male platyfish Xiphophorus maculatus . J Exp Biol 203:171–181
    [Google Scholar]
  13. Kloas W., Lutz I., Einspanier R. 1999; Amphibians as a model to study endocrine disruptors. II. Estrogenic activity of environmental chemicals in vitro and in vivo . Sci Total Environ 225:59–68 [CrossRef]
    [Google Scholar]
  14. Kveštak R., Ahel M. 1995; Biotransformation of nonylphenol polyethoxylate surfactants by estuarine mixed bacterial cultures. Arch Environ Contam Toxicol 29:551–556 [CrossRef]
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  16. Ohta H., Hattori T. 1983; Agromonas oligotrophica gen. nov., sp. nov. a nitrogen-fixing oligotrophic bacterium. Antonie van Leeuwenhoek 49:429–446
    [Google Scholar]
  17. Ohta H., Hara H., Fukui K., Kurihara H., Murayama Y., Kato K. 1993; Association of Actinobacillus actinomycetemcomitans leukotoxin with nucleic acids on the bacterial cell surface. Infect Immun 61:4878–4884
    [Google Scholar]
  18. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  19. Pinyakong O., Habe H., Omori T. 2003; The unique aromatic catabolic genes in sphingomonads degrading polycyclic aromatic hydrocarbons (PAHs. J Gen Appl Microbiol 49:1–19 [CrossRef]
    [Google Scholar]
  20. Rudling L., Solyom P. 1974; The investigation of biodegradability of branched nonylphenol ethoxylates. Water Res 8:115–119 [CrossRef]
    [Google Scholar]
  21. Saitou H., Miura K. 1963; Preparation of transforming deoxyribonucleic acid by phenol treatment. Biochim Biophys Acta 72:619–629 [CrossRef]
    [Google Scholar]
  22. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  23. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  24. Soto A. M., Justicia H., Wray J. W., Sonnenschein C. 1991; p -Nonyl-phenol: an estrogenic xenobiotic released from ‘modified’ polystyrene. Environ Health Perspect 92:167–173 [CrossRef]
    [Google Scholar]
  25. Takeuchi M., Hamana K., Hiraishi A. 2001; Proposal of the genus Sphingomonas sensu stricto and three new genera Sphingobium , Novosphingobium and Sphingopyxis on the basis of phylogenetic and chemotaxonomic analyses. Int J Syst Evol Microbiol 51:1405–1417
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Tanghe T., Dhooge W., Verstraete W. 1999; Isolation of a bacterial strain able to degrade branched nonylphenol. Appl Environ Microbiol 65:746–751
    [Google Scholar]
  28. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  29. White R., Jobling S., Hoare S. A., Sumpter J. P., Parker M. G. 1994; Environmentally persistent alkylphenolic compounds are estrogenic. Endocrinology 135:175–182
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02581-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02581-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed