1887

Abstract

A novel thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium designated strain TR was isolated from a sample of a deep-sea hydrothermal chimney collected at the Rainbow vent field on the Mid-Atlantic Ridge (36°14′N). Gram-negative, non-spore-forming, non-motile rods occurred singly or in pairs. The organism grew in the temperature range 37–80 °C with an optimum at 70 °C and at pH 5·5–8·4 with an optimum around 6·7. The NaCl range for growth was 10–50 g l with an optimum of 30 g l. Strain TR grew chemoorganoheterotrophically with carbohydrates, proteinaceous substrates, organic acids and alcohols using oxygen or nitrate as electron acceptors. The isolate was able to grow at oxygen concentrations from 0·5 to 21 %. Oxygen concentrations that promoted fastest growth ranged from 4 to 8 % under agitation. The novel isolate was able to grow lithoheterotrophically with molecular hydrogen as the energy source. The G+C content of the genomic DNA was 68·4 mol%. Phylogenetic analysis of the 16S rDNA sequence placed strain TR within the phylum of the . On the basis of phenotypic and phylogenetic data, it is proposed that this isolate should be described as a member of a novel species of a new genus as gen. nov., sp. nov. The type strain is TR (=DSM 14978 =VKM B-2292 =JCM 11956).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02579-0
2003-07-01
2019-08-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531143.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02579-0&mimeType=html&fmt=ahah

References

  1. Balch, W. E., Fox, G. E., Magrum, L. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  2. Bonch-Osmolovskaya, E. A., Sokolova, T. G., Kostrikina, N. A. & Zavarzin, G. A. ( 1990; ). Desulfurella acetivorans gen. nov. and sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153, 151–155.[CrossRef]
    [Google Scholar]
  3. Brian, B. L. & Gardner, E. W. ( 1968; ). A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Appl Microbiol 16, 549–552.
    [Google Scholar]
  4. Brock, T. D. & Edwards, M. R. ( 1970; ). Fine structure of Thermus aquaticus, an extreme thermophile. J Bacteriol 104, 509–517.
    [Google Scholar]
  5. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  6. Chung, A. P., Rainey, F., Nobre, M. F., Burghardt, J. & da Costa, M. S. ( 1997; ). Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. Int J Syst Bacteriol 47, 1225–1230.[CrossRef]
    [Google Scholar]
  7. da Costa, M. S. & Rainey, F. A. ( 2001; ). Family I. Thermaceae fam. nov. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 1, The Archaea and the Deeply Branching and Phototrophic Bacteria, pp. 403–404. Edited by D. R. Boone, R. W. Castenholz & G. M. Garrity. New York: Springer.
  8. Donato, M. M., Seleiro, E. A. & da Costa, M. S. ( 1990; ). Polar lipid and fatty acid composition of strains of the genus Thermus. Syst Appl Microbiol 13, 234–239.[CrossRef]
    [Google Scholar]
  9. Donato, M. M., Seleiro, E. A. & da Costa, M. S. ( 1991; ). Polar lipid and fatty acid composition of strains of the Thermus ruber. Syst Appl Microbiol 14, 235–239.[CrossRef]
    [Google Scholar]
  10. Embley, T. M., O'Donnell, A. G., Wait, R. & Rostron, J. ( 1987; ). Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus. Syst Appl Microbiol 10, 20–27.[CrossRef]
    [Google Scholar]
  11. Ferreira, A. C., Nobre, M. F., Rainey, F. A., Silva, M. T., Wait, R., Burghardt, J., Chung, A. P. & da Costa, M. S. ( 1997; ). Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47, 939–947.[CrossRef]
    [Google Scholar]
  12. Götz, D., Banta, A., Beveridge, T. J., Rushdi, A. I., Simoneit, B. R. T. & Reysenbach, A.-L. ( 2002; ). Persephonella marina gen. nov., sp. nov. and Persephonella guaymasensis sp. nov., two novel, thermophilic, hydrogen-oxidizing microaerophiles from deep-sea hydrothermal vents. Int J Syst Evol Microbiol 52, 1349–1359.[CrossRef]
    [Google Scholar]
  13. Hensel, R., Demharter, W., Kandler, O., Kroppenstedt, R. M. & Stackebrandt, E. ( 1986; ). Chemotaxonomic and molecular-genetic studies of the genus Thermus: evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus. Int J Syst Bacteriol 36, 444–453.[CrossRef]
    [Google Scholar]
  14. Marteinsson, V. T., Birrien, J.-L., Kristjansson, J. K. & Prieur, D. ( 1995; ). First isolation of thermophilic aerobic non-sporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18, 163–174.[CrossRef]
    [Google Scholar]
  15. Marteinsson, V. T., Birrien, J.-L., Jeanthon, C. & Prieur, D. ( 1996; ). Numerical taxonomic study of thermophilic Bacillus isolated from three geographically separated deep-sea hydrothermal vents. FEMS Microbiol Ecol 21, 255–266.[CrossRef]
    [Google Scholar]
  16. Marteinsson, V. T., Birrien, J.-L., Raguénès, G., da Costa, M. S. & Prieur, D. ( 1999; ). Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3, 247–251.[CrossRef]
    [Google Scholar]
  17. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  18. Miroshnichenko, M. L., Gongazde, G. A., Lysenko, A. M. & Bonch-Osmolovskaya, E. A. ( 1994; ). Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch Microbiol 161, 88–93.
    [Google Scholar]
  19. Miroshnichenko, M. L., Kostrikina, N. A., Chernyh, N. A., Pimenov, N. V., Tourova, T. P., Antipov, A. N., Spring, S., Stackebrandt, E. & Bonch-Osmolovskaya, E. A. ( 2003a; ). Caldithrix abyssi gen. nov., sp. nov., a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53, 323–329.[CrossRef]
    [Google Scholar]
  20. Miroshnichenko, M. L., L'Haridon, S., Jeanthon, C. & 7 other authors ( 2003b; ). Oceanithermus profundus gen. nov., sp. nov., a thermophilic, microaerophilic, facultatively chemolithoheterotrophic bacterium from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 53, 747–752.[CrossRef]
    [Google Scholar]
  21. Nichols, P. D., Guckert, J. B. & White, D. C. ( 1986; ). Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5, 49–55.[CrossRef]
    [Google Scholar]
  22. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  23. Reysenbach, A. L., Longnecker, K. & Kirshtein, J. ( 2000; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  24. Sako, Y., Nakagawa, S., Takai, K. & Horikoshi, K. ( 2003; ). Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53, 59–65.[CrossRef]
    [Google Scholar]
  25. Strömpl, C., Tindall, B. J., Jarvis, G. N., Lünsdorf, H., Moore, E. R. B. & Hippe, H. ( 1999; ). A re-evaluation of the taxonomy of the genus Anaerovibrio, with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 49, 1861–1872.[CrossRef]
    [Google Scholar]
  26. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  27. Tindall, B. J. ( 1990a; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  28. Tindall, B. J. ( 1990b; ). Lipid composition of Halobacterium lacusprofundi. FEMS Microbiol Lett 66, 199–202.[CrossRef]
    [Google Scholar]
  29. Williams, R. A. D. & da Costa, M. S. ( 1992; ). The genus Thermus and related microorganisms. In The Prokaryotes, 2nd edn, vol. 1, pp. 3746–3751. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K. H. Schleifer. New York: Springer.
  30. Wolin, E. A., Wolin, M. J. & Wolfe, R. S. ( 1963; ). Formation of methane by bacterial extracts. J Biol Chem 238, 2882–2888.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02579-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02579-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error