1887

Abstract

An alkane-degrading bacterium, designated GTI MVAB Hex1, was isolated from chronically crude oil-contaminated soil from an oilfield in southern Illinois. The isolate grew very weakly or not at all in minimal or rich media without hydrocarbons. Straight-chain aliphatic hydrocarbons, such as hexadecane and heptadecane, greatly stimulated growth; shorter-chain (⩽C) hydrocarbons did not (with decane as the sole exception). Growth was also greatly enhanced by the branched aliphatic hydrocarbons pristane and squalane. The latter of these was most intriguing, as catabolism of squalane has hitherto been reported only for species. Although unable to utilize mono- or polycyclic aromatic hydrocarbons as sole carbon sources, the isolate did show slight fluorene-mineralizing capability in Luria–Bertani medium, which was partially repressed by hexadecane. In contrast, hexadecane supplementation greatly increased mineralization of C-dodecane, which was not a growth substrate. Further testing emphasized the isolate's extremely narrow substrate range, as only Tween 40 and Tween 80 supported significant growth. Microscopic examination (by scanning and transmission electron microscopy) revealed a slightly polymorphic coccoidal to bacillar morphology, with hydrocarbon-grown cells tending to be more elongated. When grown with hexadecane, GTI MVAB Hex1 accumulated a large number of electron-transparent intracytoplasmic inclusion bodies. These were also prevalent during growth in the presence of squalane. Smaller inclusion bodies were observed occasionally with pristane supplementation; they were, however, absent during growth on crude oil. On the basis of 16S rRNA gene sequence data and range of growth substrates, classification of this isolate as the type strain of gen. nov., sp. nov. is proposed, which is most closely related (approx. 94 % sequence similarity) to .

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02568-0
2003-09-01
2019-09-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531389.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02568-0&mimeType=html&fmt=ahah

References

  1. Alley, J. F. & Brown, L. R. ( 2000; ). Use of sublimation to prepare solid microbial media with water-insoluble substrates. Appl Environ Microbiol 66, 439–442.[CrossRef]
    [Google Scholar]
  2. Altschul, S. F., Madden, T. L., Schäffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
    [Google Scholar]
  3. Alvarez, H. M., Mayer, F., Fabritius, D. & Steinbüchel, A. ( 1996; ). Formation of intracytoplasmic lipid inclusions by Rhodococcus opacus strain PD630. Arch Microbiol 165, 377–386.[CrossRef]
    [Google Scholar]
  4. Alvarez, H. M., Souto, M. F., Viale, A. & Pucci, O. H. ( 2001; ). Biosynthesis of fatty acids and triacylglycerols by 2,6,10,14-tetramethyl pentadecane-grown cells of Nocardia globerula 432. FEMS Microbiol Lett 200, 195–200.[CrossRef]
    [Google Scholar]
  5. Atlas, R. M. & Bartha, R. ( 1972; ). Degradation and mineralization of petroleum by two bacteria isolated from coastal waters. Biotechnol Bioeng 14, 297–308.[CrossRef]
    [Google Scholar]
  6. Berekaa, M. M. & Steinbüchel, A. ( 2000; ). Microbial degradation of the multiply branched alkane 2,6,10,15,19,23-hexamethyltetracosane (squalane) by Mycobacterium fortuitum and Mycobacterium ratisbonense. Appl Environ Microbiol 66, 4462–4467.[CrossRef]
    [Google Scholar]
  7. Bernards, A. T., Dijkshoorn, L., Van der Toorn, J., Bochner, B. R. & Van Boven, C. P. ( 1995; ). Phenotypic characterization of Acinetobacter strains of 13 DNA-DNA hybridisation groups by means of the Biolog system. J Med Microbiol 42, 113–119.[CrossRef]
    [Google Scholar]
  8. Bertrand, J. C., Mutafschiev, S., Henkel, H. G., Bazin, H. & Azoulay, E. ( 1976a; ). Isolation and study of a new marine bacterium growing on hydrocarbons. I. Physiological study. Ann Microbiol (Paris) 127B, 373–391 (in French).
    [Google Scholar]
  9. Bertrand, J. C., Bazin, H. & Azoulay, E. ( 1976b; ). Isolation and study of a new marine bacterium growing on hydrocarbons. II. Mechanism of lysis and viability. Ann Microbiol (Paris) 127B, 393–409 (in French).
    [Google Scholar]
  10. Bogan, B. W., Lahner, L. M., Trbovic, V., Szajkovics, A. M. & Paterek, J. R. ( 2001a; ). Effects of alkylphosphates and nitrous oxide on microbial degradation of polycyclic aromatic hydrocarbons. Appl Environ Microbiol 67, 2139–2144.[CrossRef]
    [Google Scholar]
  11. Bogan, B. W., Lahner, L. M. & Paterek, J. R. ( 2001b; ). Limited roles for salicylate and phthalate in bacterial PAH bioremediation. Bioremed J 5, 93–100.[CrossRef]
    [Google Scholar]
  12. Bozzola, J. J. & Russell, L. D. ( 1999; ). Electron Microscopy: Principles and Techniques for Biologists, 2nd edn. Sudbury, MA: Jones & Bartlett.
  13. Cabezalí, C. B. & Cubitto, M. A. ( 1990; ). Detcción bacteriológica de contaminación por petróleo en el estuario de Bahía Blanca. Rev Argent Microbiol 22, 167–174 (in Spanish).
    [Google Scholar]
  14. Cubitto, M. A. & Cabezalí, C. B. ( 1994; ). Marine bacterium capable of preferential growth on hydrocarbons isolated from Bahía Blanca estuary. Microbios 77, 15–18.
    [Google Scholar]
  15. Glauert, A. M. ( 1991; ). Fixation, Dehydration and Embedding of Biological Specimens. Amsterdam: Elsevier.
  16. Ibrahim, A., Gerner-Smidt, P. & Liesack, W. ( 1997; ). Phylogenetic relationship of the twenty-one DNA groups of the genus Acinetobacter as revealed by 16S ribosomal DNA sequence analysis. Int J Syst Bacteriol 47, 837–841.[CrossRef]
    [Google Scholar]
  17. Ishige, T., Tani, A., Takabe, K., Kawasaki, K., Sakai, Y. & Kato, N. ( 2002; ). Wax ester production from n-alkanes by Acinetobacter sp. strain M-1: ultrastructure of cellular inclusions and role of acyl coenzyme A reductase. Appl Environ Microbiol 68, 1192–1195.[CrossRef]
    [Google Scholar]
  18. Lal, B. & Khanna, S. ( 1996; ). Degradation of crude oil by Acinetobacter calcoaceticus and Alcaligenes odorans. J Appl Bacteriol 81, 355–362.
    [Google Scholar]
  19. McKenna, E. J. & Kallio, R. E. ( 1971; ). Microbial metabolism of the isoprenoid alkane pristane. Proc Natl Acad Sci U S A 68, 1552–1554.[CrossRef]
    [Google Scholar]
  20. Merkel, G. J., Underwood, W. H. & Perry, J. J. ( 1978; ). Isolation of thermophilic bacteria capable of growth solely on long-chain hydrocarbons. FEMS Microbiol Lett 3, 81–83.[CrossRef]
    [Google Scholar]
  21. Nakajima, K. & Sato, A. ( 1983; ). Microbial metabolism of the isoprenoid alkane pristane. Nippon Nogeikagaku Kaishi 57, 299–305.[CrossRef]
    [Google Scholar]
  22. Pirnik, M. P., Atlas, R. M. & Bartha, R. ( 1974; ). Hydrocarbon metabolism by Brevibacterium erythrogenes: normal and branched alkanes. J Bacteriol 119, 868–878.
    [Google Scholar]
  23. Radwan, S. S., Sorkhoh, N. A., Felzmann, H. & El-Desouky, A.-F. ( 1996; ). Uptake and utilization of n-octacosane and n-nonacosane by Arthrobacter nicotianae KCC B35. J Appl Bacteriol 80, 370–374.[CrossRef]
    [Google Scholar]
  24. Sakai, Y., Maeng, J. H., Tani, Y. & Kato, N. ( 1994; ). Use of long-chain n-alkanes (C13-C44) by an isolate, Acinetobacter sp. M-1. Biosci Biotechnol Biochem 58, 2128–2130.[CrossRef]
    [Google Scholar]
  25. Schaeffer, T. L., Cantwell, S. G., Brown, J. L., Watt, D. S. & Fall, R. R. ( 1979; ). Microbial growth on hydrocarbons: terminal branching inhibits biodegradation. Appl Environ Microbiol 38, 742–746.
    [Google Scholar]
  26. Scott, C. C. L. & Finnerty, W. R. ( 1976a; ). A comparative analysis of the ultrastructure of hydrocarbon-oxidizing micro-organisms. J Gen Microbiol 94, 342–350.[CrossRef]
    [Google Scholar]
  27. Scott, C. C. L. & Finnerty, W. R. ( 1976b; ). Characterization of intracytoplasmic hydrocarbon inclusions from the hydrocarbon-oxidizing Acinetobacter species HO1-N. J Bacteriol 127, 481–489.
    [Google Scholar]
  28. Soli, G. & Bens, E. M. ( 1972; ). Bacteria which attack petroleum hydrocarbons in a saline medium. Biotechnol Bioeng 14, 319–30.[CrossRef]
    [Google Scholar]
  29. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  30. Zarilla, K. A. & Perry, J. J. ( 1984; ). Thermoleophilum album gen. nov. and sp. nov, a bacterium obligate for thermophily and n-alkane substrates. Arch Microbiol 137, 286–290.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02568-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02568-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error