sp. nov., a filamentous, thermophilic, anaerobic bacterium isolated from a deep hot aquifer in the Aquitaine Basin Free

Abstract

An anaerobic, thermophilic, filamentous (0.45 × >100 µm) bacterium, designated D1-25-10-4, was isolated from a deep hot aquifer in France. Cells were non-motile and Gram-negative. Growth was observed at 43–65 °C (optimum 55 °C), at pH 6.8–7.8 (optimum pH 7.0) and with 0–5 g NaCl l (optimum 0 g NaCl l). Strain D1-25-10-4 was a chemo-organotroph and fermented ribose, maltose, glucose, galactose, arabinose, fructose, mannose, sucrose, raffinose, xylose, glycerol, fumarate, peptone, starch and xylan. Yeast extract was required for growth. Sulfate, thiosulfate, sulfite, elemental sulfur, nitrate, nitrite and fumarate were not used as terminal electron acceptors. The G+C content of the DNA was 61.9 mol%. The major cellular fatty acids of strain D1-25-10-4 were C, C C and iso-C. The closest phylogenetic relative of strain D1-25-10-4 was STL-6-O1 (97.9 % 16S rRNA gene sequence similarity). DNA–DNA relatedness between strain D1-25-10-4 and DSM 14535 was 8.7±1 %. On the basis of phylogenetic, genotypic and phenotypic characteristics, strain D1-25-10-4 represents a novel species within the genus , class , phylum , for which the name sp. nov. is proposed. The type strain is D1-25-10-4 ( = DSM 22659  = JCM 16120).

Funding
This study was supported by the:
  • AFRETH
  • Institut du Thermalisme – Université Victor Segalen Bordeaux 2
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025676-0
2011-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1436.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025676-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296[PubMed]
    [Google Scholar]
  2. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [View Article][PubMed]
    [Google Scholar]
  3. Botero L. M., Brown K. B., Brumefield S., Burr M., Castenholz R. W., Young M., McDermott T. R. 2004; Thermobaculum terrenum gen. nov., sp. nov.: a non-phototrophic gram-positive thermophile representing an environmental clone group related to the Chloroflexi (green non-sulfur bacteria) and Thermomicrobia . Arch Microbiol 181:269–277 [View Article][PubMed]
    [Google Scholar]
  4. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [View Article][PubMed]
    [Google Scholar]
  5. Castenholz C. W. 2001; Class I. ‘Chloroflexi’. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 p. 427 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  6. Cavaletti L., Monciardini P., Bamonte R., Schumann P., Rohde M., Sosio M., Donadio S. 2006; New lineage of filamentous, spore-forming, gram-positive bacteria from soil. Appl Environ Microbiol 72:4360–4369 [View Article][PubMed]
    [Google Scholar]
  7. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [View Article]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  9. Demharter W., Hensel R., Smida J., Stackebrandt E. 1989; Sphaerobacter thermophilus gen. nov., sp. nov. A deeply rooting member of the Actinomycetes subdivision isolated from thermophilically treated sewage sludge. Syst Appl Microbiol 11:261–266 [CrossRef]
    [Google Scholar]
  10. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [View Article][PubMed]
    [Google Scholar]
  11. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 113:327–332 [View Article]
    [Google Scholar]
  12. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [View Article][PubMed]
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  14. Garrity G. M., Holt J. G. 2001a; Phylum BVI. Chloroflexi phy. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 p. 427 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  15. Garrity G. M., Holt J. G. 2001b; Phylum BVII. Thermomicrobia phy. nov.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 1 p. 447 Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  16. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  17. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995a; Chloroflexus aggregans sp. nov., a filamentous phototrophic bacterium which forms dense cell aggregates by active gliding movement. Int J Syst Bacteriol 45:676–681 [View Article][PubMed]
    [Google Scholar]
  18. Hanada S., Hiraishi A., Shimada K., Matsuura K. 1995b; Isolation of Chloroflexus aurantiacus and related thermophilic phototrophic bacteria from Japanese hot springs using an improved isolation procedure. J Gen Appl Microbiol 41:119–130 [View Article]
    [Google Scholar]
  19. Hanada S., Takaichi S., Matsuura K., Nakamura K. 2002; Roseiflexus castenholzii gen. nov., sp. nov., a thermophilic, filamentous, photosynthetic bacterium that lacks chlorosomes. Int J Syst Evol Microbiol 52:187–193[PubMed] [CrossRef]
    [Google Scholar]
  20. Hugenholtz P., Stackebrandt E. 2004; Reclassification of Sphaerobacter thermophilus from the subclass Sphaerobacteridae in the phylum Actinobacteria to the class Thermomicrobia (emended description) in the phylum Chloroflexi (emended description). Int J Syst Evol Microbiol 54:2049–2051 [View Article][PubMed]
    [Google Scholar]
  21. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [View Article]
    [Google Scholar]
  22. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  23. Jackson T. J., Ramaley R. F., Meinschein W. G. 1973; Thermomicrobium, a new genus of extremely thermophilic bacteria. Int J Syst Bacteriol 23:28–36 [View Article]
    [Google Scholar]
  24. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  25. Keppen O. I., Tourova T. P., Kuznetsov B. B., Ivanovsky R. N., Gorlenko V. M. 2000; Proposal of Oscillochloridaceae fam. nov. on the basis of a phylogenetic analysis of the filamentous anoxygenic phototrophic bacteria, and emended description of Oscillochloris and Oscillochloris trichoides in comparison with further new isolates. Int J Syst Evol Microbiol 50:1529–1537[PubMed] [CrossRef]
    [Google Scholar]
  26. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  27. Le Fanic, R. (2005). Hydrogéologie d’un système thermal et modélisation couplée hydrodynamique, thermique en vue de la gestion de la ressource. PhD thesis, Université Bordeaux 3, France (in French).
  28. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [View Article][PubMed]
    [Google Scholar]
  29. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  30. Moe W. M., Yan J., Nobre M. F., da Costa M. S., Rainey F. A. 2009; Dehalogenimonas lykanthroporepellens gen. nov., sp. nov., a reductively dehalogenating bacterium isolated from chlorinated solvent-contaminated groundwater. Int J Syst Evol Microbiol 59:2692–2697 [View Article][PubMed]
    [Google Scholar]
  31. Pierson B. K., Giovannoni S. J., Stahl D. A., Castenholz R. W. 1985; Heliothrix oregonensis, gen. nov., sp. nov., a phototrophic filamentous gliding bacterium containing bacteriochlorophyll a. Arch Microbiol 142:164–167 [View Article][PubMed]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  33. Sekiguchi Y., Yamada T., Hanada S., Ohashi A., Harada H., Kamagata Y. 2003; Anaerolinea thermophila gen. nov., sp. nov. and Caldilinea aerophila gen. nov., sp. nov., novel filamentous thermophiles that represent a previously uncultured lineage of the domain Bacteria at the subphylum level. Int J Syst Evol Microbiol 53:1843–1851 [View Article][PubMed]
    [Google Scholar]
  34. Van de Peer Y., De Wachter R. 1997; Construction of evolutionary distance trees with treecon for Windows: accounting for variation in nucleotide substitution rate among sites. Comput Appl Biosci 13:227–230[PubMed]
    [Google Scholar]
  35. Yamada T., Sekiguchi Y., Hanada S., Imachi H., Ohashi A., Harada H., Kamagata Y. 2006; Anaerolinea thermolimosa sp. nov., Levilinea saccharolytica gen. nov., sp. nov. and Leptolinea tardivitalis gen. nov., sp. nov., novel filamentous anaerobes, and description of the new classes Anaerolineae classis nov. and Caldilineae classis nov. in the bacterial phylum Chloroflexi . Int J Syst Evol Microbiol 56:1331–1340 [View Article][PubMed]
    [Google Scholar]
  36. Yamada T., Imachi H., Ohashi A., Harada H., Hanada S., Kamagata Y., Sekiguchi Y. 2007; Bellilinea caldifistulae gen. nov., sp. nov. and Longilinea arvoryzae gen. nov., sp. nov., strictly anaerobic, filamentous bacteria of the phylum Chloroflexi isolated from methanogenic propionate-degrading consortia. Int J Syst Evol Microbiol 57:2299–2306 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025676-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025676-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed