1887

Abstract

Two bacterial strains, HTCC2503 and HTCC2517, were isolated from the Bermuda Atlantic Time Series Station in the western Sargasso Sea, Atlantic Ocean, by new high-throughput culture methods that rely on dilution to extinction in very-low-nutrient media. Characterization of the two strains by polyphasic approaches revealed that they belonged to the same species. These isolates are Gram-negative, strictly aerobic, chemoheterotrophic, slightly motile short rods with a single flagellum. The temperature, pH and NaCl concentration ranges for growth were 10–37 °C, 6·0–9·0 and 0·75–20 % (w/v), respectively. Colonies on marine agar were very small (0·3–0·8 mm in diameter), yellowish-brown and very hard. Carotenoid pigments were synthesized but bacteriochlorophyll was not. Several kinds of pentose, hexose, sugar alcohol, oligosaccharide and amino acid were utilized as sole carbon sources. Oxidase was produced, but catalase was not. All cellular fatty acids were even-numbered monounsaturated or saturated fatty acids and the major fatty acid was -7-octadecenoic acid (73·3 %). The DNA G+C content of strain HTCC2503 was 60·8 mol%. Phylogenetic analyses of 16S rRNA gene sequences clearly indicated that the strains formed a distinct lineage, allied with activated sludge environmental clone H9, in the -. The clade containing strains HTCC2503 and HTCC2517 and clone H9 could not be phylogenetically associated with any of the six known orders of the -. From this polyphasic evidence, it is proposed that the novel strains should be classified as gen. nov., sp. nov. The type strain is HTCC2503 (=ATCC BAA-594 =KCTC 12087) and the reference strain is HTCC2517.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02566-0
2003-07-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/4/ijs531031.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02566-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Béjà O., Aravind L., Koonin E. V.9 other authors 2000; Bacterial rhodopsin: evidence for a new type of phototrophy in the sea. Science 289:1902–1906 [CrossRef]
    [Google Scholar]
  3. Bhat U. R., Carlson R. W., Busch M., Mayer H. 1991; Distribution and phylogenetic significance of 27-hydroxy-octacosanoic acid in lipopolysaccharides from bacteria belonging to the alpha-2 subgroup of Proteobacteria . Int J Syst Bacteriol 41:213–217 [CrossRef]
    [Google Scholar]
  4. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993
    [Google Scholar]
  5. Connon S. A., Giovannoni S. J. 2002; High-throughput methods for culturing microorganisms in very-low-nutrient media yield diverse new marine isolates. Appl Environ Microbiol 68:3878–3885 [CrossRef]
    [Google Scholar]
  6. Davis H. C., Guillard R. R. L. 1958; Relative value of ten genera of micro-organisms as food for oyster and clam larvae. USFWS Fish Bull 136:293–304
    [Google Scholar]
  7. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  8. Ferguson R. L., Buckley E. N., Palumbo A. V. 1984; Response of marine bacterioplankton to differential filtration and confinement. Appl Environ Microbiol 47:49–55
    [Google Scholar]
  9. Garrity G. M., Holt J. G. 2001; The road map to the Manual . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1 pp 119–155Edited by Garrity G. M., Boone D. R., Castenholz R. W. New York: Springer;
    [Google Scholar]
  10. Giovannoni S. J., Rappé M. S. 2000; Evolution, diversity, and molecular ecology of marine prokaryotes. In Microbial Ecology of the Oceans pp 47–84Edited by Kirchman D. L. New York: Wiley-Liss;
    [Google Scholar]
  11. Giovannoni S. J., Britschgi T. B., Moyer C. L., Field K. G. 1990; Genetic diversity in Sargasso Sea bacterioplankton. Nature 345:60–63 [CrossRef]
    [Google Scholar]
  12. Hiraishi A., Ueda Y. 1994; Intrageneric structure of the genus Rhodobacter : transfer of Rhodobacter sulfidophilus and related marine species to the genus Rhodovulum gen. nov. Int J Syst Bacteriol 44:15–23 [CrossRef]
    [Google Scholar]
  13. Jarvis B. D. W., van Berkum P., Chen W. X., Nour S. M., Fernandez M. P., Cleyet-Marel J. C., Gillis M. 1997; Transfer of Rhizobium loti , Rhizobium huakuii , Rhizobium ciceri , Rhizobium mediterraneum , and Rhizobium tianshanense to Mesorhizobium gen. nov. Int J Syst Bacteriol 47:895–898 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Juretschko S., Loy A., Lehner A., Wagner M. 2002; The microbial community composition of a nitrifying-denitrifying activated sludge from an industrial sewage treatment plant analyzed by the full-cycle rRNA approach. Syst Appl Microbiol 25:84–99 [CrossRef]
    [Google Scholar]
  16. Kogure K., Simidu U., Taga N. 1979; A tentative direct microscopic method for counting living marine bacteria. Can J Microbiol 25:415–420 [CrossRef]
    [Google Scholar]
  17. Kosako Y., Yabuuchi E., Naka T., Fujiwara N., Kobayashi K. 2000; Proposal of Sphingomonadaceae fam. nov., consisting of Sphingomonas Yabuuchi et al , 1990. Erythrobacter Shiba and Shimidu 1982, Erythromicrobium Yurkov et al . 1994, Porphyrobacter Fuerst et al , 1993. Zymomonas Kluyver and van Niel 1936, and Sandaracinobacter Yurkov et al . 1997, with the type genus Sphingomonas Yabuuchi et al . 1990. Microbiol Immunol 44:563–575 [CrossRef]
    [Google Scholar]
  18. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703
    [Google Scholar]
  19. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  20. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [CrossRef]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  22. Petursdottir S. K., Kristjansson J. K. 1997; Silicibacter lacuscaerulensis gen. nov., sp. nov. a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1:94–99 [CrossRef]
    [Google Scholar]
  23. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting aquatic microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  24. Rappé M. S., Connon S. A., Vergin K. L., Giovannoni S. J. 2002; Cultivation of the ubiquitous SAR11 marine bacterioplankton clade. Nature 418:630–633 [CrossRef]
    [Google Scholar]
  25. Reasoner D. J., Geldreich E. E. 1985; A new medium for the enumeration and subculture of bacteria from potable water. Appl Environ Microbiol 49:1–7
    [Google Scholar]
  26. Rüger H.-J., Krambeck H.-J. 1994; Evaluation of the BIOLOG substrate metabolism system for classification of marine bacteria. Syst Appl Microbiol 17:281–288 [CrossRef]
    [Google Scholar]
  27. Ruiz A., Poblet M., Mas A., Guillamón J. M. 2000; Identification of acetic acid bacteria by RFLP of PCR-amplified 16S rDNA and 16S–23S rDNA intergenic spacer. Int J Syst Evol Microbiol 50:1981–1987 [CrossRef]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  29. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Microbiology pp 611–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Suzuki M. T., Rappé M. S., Haimberger Z. W., Winfield H., Adair N., Ströbel J., Giovannoni S. J. 1997; Bacterial diversity among small-subunit rRNA gene clones and cellular isolates from the same seawater sample. Appl Environ Microbiol 63:983–989
    [Google Scholar]
  31. Swofford D. L. 2002 paup*: Phylogenetic Analysis Using Parsimony (*and other methods), version 4.0 beta 10 for Macintosh Sunderland, MA: Sinauer Associates;
    [Google Scholar]
  32. Urakami T., Araki H., Oyanagi H., Suzuki K., Komagata K. 1992; Transfer of Pseudomonas aminovorans (den Dooren de Jong 1926) to Aminobacter gen. nov. as Aminobacter aminovorans comb. nov. and description of Aminobacter aganoensis sp. nov. and Aminobacter niigataensis sp. nov. Int J Syst Bacteriol 42:84–92 [CrossRef]
    [Google Scholar]
  33. Vandamme P., Pot B., Gillis M., De Vos P., Kersters K., Swings J. 1996; Polyphasic taxonomy, a consensus approach to bacterial systematics. Microbiol Rev 60:407–438
    [Google Scholar]
  34. Woese C. R., Stackebrandt E., Weisburg W. G.8 other authors 1984; The phylogeny of purple bacteria: the alpha subdivision. Syst Appl Microbiol 5:315–326 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02566-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02566-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error