1887

Abstract

A Gram-positive, halophilic bacterium, strain CAU 9536, was isolated from a tidal flat sediment in the Yellow Sea, Republic of Korea. Strain CAU 9536 grew optimally at 30 °C, at pH 9.0 and in the presence of 13.0 % (w/v) NaCl. Phylogenetic analysis based on 16S rRNA gene sequences revealed that strain CAU 9536 belonged to the genus , and showed sequence similarity levels of 99.0 % to MCCC 1A05965 and 98.0 % to JC1078. DNA–DNA relatedness values between strain CAU 9536 and the above two type strains were below 45.0 %. The cell-wall peptidoglycan of strain CAU 9536 was based on -diaminopimelic acid, in contrast to those of and . The polar lipids were diphosphatidylglycerol, phosphatidylglycerol, phosphatidylcholine and phosphatidylinositol. Whole-cell hydrolysates contained mainly glucose and ribose. The major isoprenoid quinone was menaquinone MK-8 (H), and the predominant cellular fatty acid was iso-C. The DNA G+C content of strain CAU 9536 was 73.5 mol%. Based on phenotypic, chemotaxonomic and genotypic data, strain CAU 9536 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is CAU 9536 ( = KCTC 19774 = CCUG 59777).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025635-0
2011-06-01
2019-10-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1299.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025635-0&mimeType=html&fmt=ahah

References

  1. Cho S. L., Nam S. W., Yoon J. H., Lee J. S., Sukhoom A., Kim W.. ( 2008;). Lactococcus chungangensis sp. nov., a lactic acid bacterium isolated from activated sludge foam. . Int J Syst Evol Microbiol 58:, 1844–1849. [CrossRef].[PubMed].
    [Google Scholar]
  2. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W.. ( 2007;). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef].[PubMed].
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  4. Felsenstein J.. ( 1981;). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef].[PubMed].
    [Google Scholar]
  5. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  6. Felsenstein J.. ( 1989;). phylip – phylogeny inference package (version 3.2). . Cladistics 5:, 164–166.
    [Google Scholar]
  7. Fitch W. M., Margoliash E.. ( 1967;). Construction of phylogenetic trees. . Science 155:, 279–284. [CrossRef].[PubMed].
    [Google Scholar]
  8. Gordon R. E., Mihm J. M.. ( 1962;). Identification of Nocardia caviae (Erikson) nov. comb.. Ann N Y Acad Sci 98:, 628–636. [CrossRef]
    [Google Scholar]
  9. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K.. ( 1998;). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R.. ( 1969;). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N... New York:: Academic Press;.
    [Google Scholar]
  11. Komagata K., Suzuki K.. ( 1987;). Lipid and cell-wall analysis in bacterial systematics. . Methods Microbiol 19:, 161–207. [CrossRef]
    [Google Scholar]
  12. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  13. Minnikin D. E., Hutchinson I. G., Caldicott A. B., Goodfellow M.. ( 1980;). Thin-layer chromatography of methanolysates of mycolic acid-containing bacteria. . J Chromatogr A 188:, 221–233. [CrossRef]
    [Google Scholar]
  14. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal K. P., Parlett J. H.. ( 1984;). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  15. Nicholson W. L., Setlow P.. ( 1990;). Sporulation, germination, and outgrowth. . In Molecular Biological Methods for Bacillus, pp. 391–450. Edited by Harwood C. R., Cutting S. M... Chichester:: Wiley;.
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed].
    [Google Scholar]
  17. Schleifer K. H.. ( 1985;). Analysis of the chemical composition and primary structure of murein. . Methods Microbiol 18:, 123–156. [CrossRef]
    [Google Scholar]
  18. Smibert R. M., Krieg N. R.. ( 1994;). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  19. Tamaoka J., Komagata K.. ( 1984;). Determination of DNA base composition by reverse-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed].
    [Google Scholar]
  21. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  22. Xiao J., Luo Y., Xie S., Xu J.. ( 2011;). Serinicoccus profundi sp. nov., an actinomycete isolated from deep-sea sediment, and emended description of the genus Serinicoccus. . Int J Syst Evol Microbiol 61:, 16–19. [CrossRef].[PubMed].
    [Google Scholar]
  23. Yi H., Schumann P., Sohn K., Chun J.. ( 2004;). Serinicoccus marinus gen. nov., sp. nov., a novel actinomycete with l-ornithine and l-serine in the peptidoglycan. . Int J Syst Evol Microbiol 54:, 1585–1589. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025635-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025635-0
Loading

Data & Media loading...

Supplements

vol. , part 6, pp. 1299 - 1303

IMAGE

Scanning electron micrograph of cells of strain CAU 9536 . Bar, 1 µm.

IMAGE

Cell-wall peptidoglycan profile of strain CAU 9536 as determined by TLC.

IMAGE

Cellular fatty acid profiles (%) of strain CAU 9536 and its closest phylogenetic relatives. [ PDF] 34 KB

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error