1887

Abstract

A Gram-negative, aerobic, short rod-shaped and non-motile bacterium, strain A-1, was isolated from a saline soil contaminated with crude oil in Xianhe, Shangdong Province, China. Strain A-1 formed yellow colonies, was moderately halophilic and grew with 0.05–27.5 % (w/v) total salts (optimum 5–8 %), at 10–42 °C (optimum 30 °C) and at pH 5.5–9.0 (optimum pH 7.2). The dominant fatty acids (>5 %) were C, summed feature 3 (comprising Cω7 and/or iso-C 2-OH), Cω7, C cyclo ω8 and C 3-OH and the predominant ubiquinone was Q-9. The genomic DNA G+C content was 67.1 mol%. Phylogenetic analysis based on 16S rRNA gene sequences indicated that strain A-1 belonged to the genus in the class . The closest relatives were YIM 91125 (97.7 % 16S rRNA gene sequence similarity), LMG 20969 (95.6 %), AAP (95.5 %) and BH843 (95.2 %). DNA–DNA relatedness between strain A-1 and CCTCC AB 206093 was 27±3 %. On the basis of phenotypic, chemotaxonomic and phylogenetic features, strain A-1 should be placed in the genus as a representative of a novel species. The name sp. nov. is proposed, with strain A-1 ( = CGMCC 1.6848  = JCM 14849) as the type strain.

Funding
This study was supported by the:
  • , National Natural Science Foundation of China , (Award 30970098 and 30700023)
  • , Special fund of State Key Joint Laboratory of Environment Simulation and Pollution Control , (Award 08Z03ESPCT)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025627-0
2012-01-01
2020-08-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/1/173.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025627-0&mimeType=html&fmt=ahah

References

  1. Acinas S. G., Antón J., Rodríguez-Valera F. 1999; Diversity of free-living and attached bacteria in offshore Western Mediterranean waters as depicted by analysis of genes encoding 16S rRNA. Appl Environ Microbiol 65:514–522[PubMed]
    [Google Scholar]
  2. Arahal D. R., Ludwig W., Schleifer K. H., Ventosa A. 2002; Phylogeny of the family Halomonadaceae based on 23S and 165 rDNA sequence analyses. Int J Syst Evol Microbiol 52:241–249[PubMed]
    [Google Scholar]
  3. Arahal D. R., Vreeland R. H., Litchfield C. D., Mormile M. R., Tindall B. J., Oren A., Bejar V., Quesada E., Ventosa A. 2007; Recommended minimal standards for describing new taxa of the family Halomonadaceae . Int J Syst Evol Microbiol 57:2436–2446 [CrossRef][PubMed]
    [Google Scholar]
  4. Arenas M., Bañón P. I., Copa-Patiño J. L., Sánchez-Porro C., Ventosa A., Soliveri J. 2009; Halomonas ilicicola sp. nov., a moderately halophilic bacterium isolated from a saltern. Int J Syst Evol Microbiol 59:578–582 [CrossRef][PubMed]
    [Google Scholar]
  5. Baron E. J., Finegold S. M. 1990 Bailey and Scott’s Diagnostic Microbiology, 8th edn. St Louis: Mosby;
    [Google Scholar]
  6. Cabrera A., Aguilera M., Fuentes S., Incerti C., Russell N. J., Ramos-Cormenzana A., Monteoliva-Sánchez M. 2007; Halomonas indalinina sp. nov., a moderately halophilic bacterium isolated from a solar saltern in Cabo de Gata, Almeria, southern Spain. Int J Syst Evol Microbiol 57:376–380 [CrossRef][PubMed]
    [Google Scholar]
  7. Callies E., Mannheim W. 1978; Classification of the Flavobacterium-Cytophaga complex on the basis of respiratory quinones and fumarate respiration. Int J Syst Bacteriol 28:14–19 [CrossRef]
    [Google Scholar]
  8. de la Haba R. R., Arahal D. R., Márquez M. C., Ventosa A. 2010; Phylogenetic relationships within the family Halomonadaceae based on comparative 23S and 16S rRNA gene sequence analysis. Int J Syst Evol Microbiol 60:737–748 [CrossRef][PubMed]
    [Google Scholar]
  9. Dobson S. J., Franzmann P. D. 1996; Unification of the genera Deleya (Baumann et al. 1983), Halomonas (Vreeland et al. 1980), and Halovibrio (Fendrich 1988) and the species Paracoccus halodenitrificans (Robinson and Gibbons 1952) in to a single genus, Halomonas, and placement of the genus Zymobacter in the family Halomonadaceae . Int J Syst Bacteriol 46:550–558 [CrossRef]
    [Google Scholar]
  10. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  11. Franzmann P. D., Wehmeyer U., Stackebrandt E. 1988; Halomonadaceae fam. nov., a new family of the class Proteobacteria to accommodate the genera Halomonas and Deleya . Syst Appl Microbiol 11:16–19 [CrossRef]
    [Google Scholar]
  12. García M. T., Mellado E., Ostos J. C., Ventosa A. 2004; Halomonas organivorans sp. nov., a moderate halophile able to degrade aromatic compounds. Int J Syst Evol Microbiol 54:1723–1728 [CrossRef][PubMed]
    [Google Scholar]
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Heyrman J., Balcaen A., De Vos P., Swings J. 2002; Halomonas muralis sp. nov., isolated from microbial biofilms colonizing the walls and murals of the Saint-Catherine chapel (Castle Herberstein, Austria). Int J Syst Evol Microbiol 52:2049–2054 [CrossRef][PubMed]
    [Google Scholar]
  15. Ivanova E. P., Kiprianova E. A., Mikhailov V. V., Levanova G. F., Garagulya A. D., Gorshkova N. M., Vysotskii M. V., Nicolau D. V., Yumoto N. other authors 1998; Phenotypic diversity of Pseudoalteromonas citrea from different marine habitats and emendation of the description. Int J Syst Bacteriol 48:247–256 [CrossRef][PubMed]
    [Google Scholar]
  16. Jeon C. O., Lim J.-M., Lee J. R., Lee G. S., Park D.-J., Lee J.-C., Oh H.-W., Kim C.-J. 2007; Halomonas kribbensis sp. nov., a novel moderately halophilic bacterium isolated from a solar saltern in Korea. Int J Syst Evol Microbiol 57:2194–2198 [CrossRef][PubMed]
    [Google Scholar]
  17. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  18. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  19. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [CrossRef][PubMed]
    [Google Scholar]
  20. Lányí B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67 [CrossRef]
    [Google Scholar]
  21. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. other authors 2007; clustal w and clustal_x version 2.0. Bioinformatics 23:2947–2948 [CrossRef][PubMed]
    [Google Scholar]
  22. Li J., Chen C., Zhao G.-Z., Klenk H.-P., Pukall R., Zhang Y.-Q., Tang S.-K., Li W.-J. 2009; Description of Dietzia lutea sp. nov., isolated from a desert soil in Egypt. Syst Appl Microbiol 32:118–123 [CrossRef][PubMed]
    [Google Scholar]
  23. Margesin R., Schinner F. 2001; Potential of halotolerant and halophilic microorganisms for biotechnology. Extremophiles 5:73–83 [CrossRef][PubMed]
    [Google Scholar]
  24. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  25. Martínez-Cánovas M. J., Quesada E., Llamas I., Béjar V. 2004; Halomonas ventosae sp. nov., a moderately halophilic, denitrifying, exopolysaccharide-producing bacterium. Int J Syst Evol Microbiol 54:733–737 [CrossRef][PubMed]
    [Google Scholar]
  26. Mata J. A., Martínez-Cánovas J., Quesada E., Béjar V. 2002; A detailed phenotypic characterisation of the type strains of Halomonas species. Syst Appl Microbiol 25:360–375 [CrossRef][PubMed]
    [Google Scholar]
  27. Nieto J. J., Vargas C., Ventosa A. 2000; Osmoprotection mechanisms in the moderately halophilic bacterium Halomonas elongata . In Recent Research Developments in Microbiology vol. 4 pp. 43–54 Edited by Pandalai S. G. Trivandrum, India: Research Signpost;
    [Google Scholar]
  28. Okamoto T., Taguchi H., Nakamura K., Ikenaga H., Kuraishi H., Yamasato K. 1993; Zymobacter palmae gen. nov., sp. nov., a new ethanol-fermenting peritrichous bacterium isolated from palm sap. Arch Microbiol 160:333–337 [CrossRef][PubMed]
    [Google Scholar]
  29. Pettersson B., de Silva S. K., Uhlén M., Priest F. G. 2000; Bacillus siralis sp. nov., a novel species from silage with a higher order structural attribute in the 16S rRNA genes. Int J Syst Evol Microbiol 50:2181–2187 [CrossRef][PubMed]
    [Google Scholar]
  30. Quesada E., Bejar V., Valderrama M. J., Ramos-Cormenzana A. 1987; Growth characteristics and salt requirement of Deleya halophila in a defined medium. Curr Microbiol 16:21–25 [CrossRef]
    [Google Scholar]
  31. Romano I., Nicolaus B., Lama L., Manca M. C., Gambacorta A. 1996; Characterization of a haloalkalophilic strictly aerobic bacterium, isolated from Pantelleria island. Syst Appl Microbiol 19:326–333 [CrossRef]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  33. Sánchez-Porro C., Martín S., Mellado E., Ventosa A. 2003; Diversity of moderately halophilic bacteria producing extracellular hydrolytic enzymes. J Appl Microbiol 94:295–300 [CrossRef][PubMed]
    [Google Scholar]
  34. Sasser M. 1990; Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc;
  35. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  36. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  37. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
  38. Vreeland R. H., Litchfield C. D., Martin E. L., Elliot E. 1980; Halomonas elongata, a new genus and species of extremely salt-tolerant bacteria. Int J Syst Bacteriol 30:485–495 [CrossRef]
    [Google Scholar]
  39. Wang Y., Tang S.-K., Lou K., Mao P.-H., Jin X., Jiang C.-L., Xu L.-H., Li W.-J. 2008; Halomonas lutea sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 58:2065–2069 [CrossRef][PubMed]
    [Google Scholar]
  40. Wang Y., Tang S.-K., Lou K., Lee J.-C., Jeon C. O., Xu L.-H., Kim C.-J., Li W.-J. 2009; Aidingimonas halophila gen. nov., sp. nov., a moderately halophilic bacterium isolated from a salt lake. Int J Syst Evol Microbiol 59:3088–3094 [CrossRef][PubMed]
    [Google Scholar]
  41. Zakrzewska-Czerwińska J., Mordarski M., Goodfellow M. 1988; DNA base composition and homology values in the classification of some Rhodococcus species. J Gen Microbiol 134:2807–2813[PubMed]
    [Google Scholar]
  42. Zhao B., Wang H., Mao X., Li R. 2009; Biodegradation of phenanthrene by a halophilic bacterial consortium under aerobic conditions. Curr Microbiol 58:205–210 [CrossRef][PubMed]
    [Google Scholar]
  43. Zhao B., Wang H., Li R., Mao X. 2010; Thalassospira xianhensis sp. nov., a polycyclic aromatic hydrocarbon-degrading marine bacterium. Int J Syst Evol Microbiol 60:1125–1129 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025627-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025627-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error