Revision of the genus La Scola 2000, with an emended description of the genus and inclusion of all species of the genus as new combinations, and proposal of sp. nov. Free

Abstract

A Gram-stain-negative, rod-shaped, non-spore-forming bacterium originating from a human clinical specimen was studied for its taxonomic position. 16S rRNA gene sequence similarity studies clearly allocated this strain (CCUG 58010) to the class , closely related to members of the genera and . was shown to be the most closely related species on the basis of 16S rRNA gene sequence similarity (97.5 %), followed by (96.8 %) and (96.4 %). Similarities to all other species of the genera and were in the range 93.9–96.2 %. Chemotaxonomic data (major ubiquinone: Q-8; major polar lipids: phosphatidylethanolamine, phosphatidylglycerol and diphosphatidylglycerol; and major fatty acids: summed feature 3 (Cω7 and/or iso-C 2-OH), C, Cω7 and C, with C 3-OH as hydroxylated fatty acid) supported the affiliation of the isolate to these genera, which share these chemotaxonomic traits. DNA–DNA hybridization of strain CCUG 58010 with the type strain of CCUG 35299 resulted in a relatedness value of 39.2 % (reciprocal, 50 %) and physiological and biochemical tests also allowed phenotypic differentiation of the isolate from the most closely related species. There is currently no justification for a division of the genera and and for this reason a proposal is made to transfer all species of the genus to the genus , as comb. nov., comb. nov., comb. nov. and comb. nov. Strain CCUG 58010 represents a novel species, for which the name sp. nov. is proposed, with the type strain CCUG 58010 ( = CCM 7792).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025585-0
2011-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1528.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025585-0&mimeType=html&fmt=ahah

References

  1. Collins M. D., Jones D. 1980; Lipids in the classification and identification of coryneform bacteria containing peptidoglycans based on 2,4-diaminobutyric acid. J Appl Bacteriol 48:459–470 [CrossRef]
    [Google Scholar]
  2. Collins M. D., Pirouz T., Goodfellow M., Minnikin D. E. 1977; Distribution of menaquinones in actinomycetes and corynebacteria. J Gen Microbiol 100:221–230[PubMed] [CrossRef]
    [Google Scholar]
  3. Gallego V., Sánchez-Porro C., García M. T., Ventosa A. 2006; Massilia aurea sp. nov., isolated from drinking water. Int J Syst Evol Microbiol 56:2449–2453 [View Article][PubMed]
    [Google Scholar]
  4. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  5. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [View Article][PubMed]
    [Google Scholar]
  6. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterisation of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [View Article]
    [Google Scholar]
  7. Kämpfer P., Dreyer U., Neef A., Dott W., Busse H.-J. 2003; Chryseobacterium defluvii sp. nov., isolated from wastewater. Int J Syst Evol Microbiol 53:93–97 [View Article][PubMed]
    [Google Scholar]
  8. Kämpfer P., Falsen E., Busse H.-J. 2008; Naxibacter varians sp. nov. and Naxibacter haematophilus sp. nov., and emended description of the genus Naxibacter . Int J Syst Evol Microbiol 58:1680–1684 [View Article][PubMed]
    [Google Scholar]
  9. La Scola B., Birtles R. J., Mallet M. N., Raoult D. 1998; Massilia timonae gen. nov., sp. nov., isolated from blood of an immunocompromised patient with cerebellar lesions. J Clin Microbiol 36:2847–2852[PubMed]
    [Google Scholar]
  10. La Scola B., Birtles R. J., Mallet M. N., Raoult D. 2000; Massilia gen. nov. In Validation of Publication of New Names and New Combinations Previously Effectively Published Outside the IJSEM, List no. 73.. Int J Syst Evol Microbiol 50:423–424 [CrossRef]
    [Google Scholar]
  11. Lindquist D., Murrill D., Burran W. P., Winans G., Janda J. M., Probert W. 2003; Characteristics of Massilia timonae and Massilia timonae-like isolates from human patients, with an emended description of the species. J Clin Microbiol 41:192–196 [View Article][PubMed]
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [View Article][PubMed]
    [Google Scholar]
  13. Minnikin D. E., Collins M. D., Goodfellow M. 1979; Fatty acid and polar lipid composition in the classification of Cellulomonas, Oerskovia and related taxa. J Appl Microbiol 47:87–95
    [Google Scholar]
  14. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  15. Pruesse E., Quast C., Knittel K., Fuchs B. M., Ludwig W., Peplies J., Glöckner F. O. 2007; silva: a comprehensive online resource for quality checked and aligned ribosomal RNA sequence data compatible with arb . Nucleic Acids Res 35:7188–7196 [View Article][PubMed]
    [Google Scholar]
  16. Weon H.-Y., Kim B.-Y., Son J.-A., Jang H. B., Hong S. K., Go S.-J., Kwon S.-W. 2008; Massilia aerilata sp. nov., isolated from an air sample. Int J Syst Evol Microbiol 58:1422–1425 [View Article][PubMed]
    [Google Scholar]
  17. Weon H.-Y., Kim B.-Y., Hong S.-B., Jeon Y.-A., Koo B.-S., Kwon S.-W., Stackebrandt E. 2009; Massilia niabensis sp. nov. and Massilia niastensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 59:1656–1660 [View Article][PubMed]
    [Google Scholar]
  18. Weon H.-Y., Yoo S.-H., Kim S.-J., Kim Y.-S., Anandham R., Kwon S.-W. 2010; Massilia jejuensis sp. nov. and Naxibacter suwonensis sp. nov., isolated from air samples. Int J Syst Evol Microbiol 60:1938–1943 [View Article][PubMed]
    [Google Scholar]
  19. Xu P., Li W. J., Tang S. K., Zhang Y. Q., Chen G.-Z., Chen H.-H., Xu L. H., Jiang C. L. 2005; Naxibacter alkalitolerans gen. nov., sp. nov., a novel member of the family ‘Oxalobacteraceae’ isolated from China. Int J Syst Evol Microbiol 55:1149–1153 [View Article][PubMed]
    [Google Scholar]
  20. Zhang Y. Q., Li W.-J., Zhang K.-Y., Tian X.-P., Jiang Y., Xu L.-H., Jiang C.-L., Lai R. 2006; Massilia dura sp. nov., Massilia albidiflava sp. nov., Massilia plicata sp. nov. and Massilia lutea sp. nov., isolated from soils in China. Int J Syst Evol Microbiol 56:459–463 [View Article][PubMed]
    [Google Scholar]
  21. Ziemke F., Höfle M. G., Lalucat J., Rosselló-Mora R. 1998; Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov. Int J Syst Bacteriol 48:179–186 [View Article][PubMed]
    [Google Scholar]
  22. Zul D., Wanner G., Overmann J. 2008; Massilia brevitalea sp. nov., a novel betaproteobacterium isolated from lysimeter soil. Int J Syst Evol Microbiol 58:1245–1251 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025585-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025585-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed