1887

Abstract

A Gram-reaction-negative, non-spore-forming, rod-shaped, aerobic bacterial strain, designated MJ11, was isolated from sludge of a leachate treatment plant in Daejeon, South Korea, and was characterized taxonomically by using a polyphasic approach. Comparative 16S rRNA gene sequence analysis showed that strain MJ11 belonged to the family , class , and was most closely related to Ca-34 (97.9 % sequence similarity) and CCUG 50899 (96.4 %). Comparative sequence analyses of the additional phylogenetic marker genes , and confirmed the affiliation of strain MJ11 to the genus . The G+C content of the genomic DNA of strain MJ11 was 59.3 mol%. The detection of a quinone system with ubiquinone Q-10 as the predominant respiratory lipoquinone, a fatty acid profile with Cω7 (62.6 %) and C cyclo ω8 (14.2 %) as the major components, a polar lipid profile with phosphatidylglycerol, phosphatidylethanolamine, phosphatidylcholine, phosphatidylmonomethylethanolamine, diphosphatidylglycerol and unknown aminolipids AL1 and AL2 as major polar lipids and spermidine and putrescine as the predominant polyamines also supported the affiliation of strain MJ11 to the genus . The DNA–DNA relatedness between strain MJ11 and DSM 22292 was 29±7 %, clearly showing that the isolate constitutes a new genospecies. Strain MJ11 could be clearly differentiated from its closest neighbours on the basis of its phenotypic, genotypic and chemotaxonomic features. Therefore, strain MJ11 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MJ11 ( = KCTC 22458  = JCM 16234).

Funding
This study was supported by the:
  • GAIA Project (Award 173-101-034)
  • Ministry of Environment, Republic of Korea
  • Korea Brain Pool Program of 2011 (Award 111S-4-5-0032)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025510-0
2011-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/11/2690.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025510-0&mimeType=html&fmt=ahah

References

  1. Busse J., Auling G. 1988; Polyamine pattern as a chemotaxonomic marker within the Proteobacteria . Syst Appl Microbiol 11:1–8 [CrossRef]
    [Google Scholar]
  2. Collins C. H., Lyne P. M. 1984 Microbiological Methods, 5th edn. London: Butterworth;
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Evol Microbiol 39:224–229
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  5. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  6. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [View Article]
    [Google Scholar]
  7. Holmes B., Popoff M., Kiredjian M., Kersters K. 1988; Ochrobactrum anthropi gen. nov., sp. nov. from human clinical specimens and previously known as group Vd. Int J Syst Bacteriol 38:406–416 [View Article]
    [Google Scholar]
  8. Huber B., Scholz H. C., Kämpfer P., Falsen E., Langer S., Busse H.-J. 2010; Ochrobactrum pituitosum sp. nov., isolated from an industrial environment. Int J Syst Evol Microbiol 60:321–326 [View Article][PubMed]
    [Google Scholar]
  9. Im W.-T., Bae H.-S., Yokota A., Lee S. T. 2004; Herbaspirillum chlorophenolicum sp. nov., a 4-chlorophenol-degrading bacterium. Int J Syst Evol Microbiol 54:851–855 [View Article][PubMed]
    [Google Scholar]
  10. Im W.-T., Kim S.-H., Kim M. K., Ten L. N., Lee S. T. 2006; Pleomorphomonas koreensis sp. nov., a nitrogen-fixing species in the order Rhizobiales . Int J Syst Evol Microbiol 56:1663–1666 [View Article][PubMed]
    [Google Scholar]
  11. Imran A., Hafeez F. Y., Frühling A., Schumann P., Malik K. A., Stackebrandt E. 2010; Ochrobactrum ciceri sp. nov., isolated from nodules of Cicer arietinum . Int J Syst Evol Microbiol 60:1548–1553 [View Article][PubMed]
    [Google Scholar]
  12. Kämpfer P., Buczolits S., Albrecht A., Busse H.-J., Stackebrandt E. 2003; Towards a standardized format for the description of a novel species (of an established genus): Ochrobactrum gallinifaecis sp. nov.. Int J Syst Evol Microbiol 53:893–896 [View Article][PubMed]
    [Google Scholar]
  13. Kämpfer P., Rosselló-Mora R., Scholz H. C., Welinder-Olsson C., Falsen E., Busse H. J. 2006; Description of Pseudochrobactrum gen. nov., with the two species Pseudochrobactrum asaccharolyticum sp. nov. and Pseudochrobactrum saccharolyticum sp. nov.. Int J Syst Evol Microbiol 56:1823–1829 [View Article][PubMed]
    [Google Scholar]
  14. Kämpfer P., Scholz H. C., Huber B., Falsen E., Busse H. J. 2007a; Ochrobactrum haematophilum sp. nov. and Ochrobactrum pseudogrignonense sp. nov., isolated from human clinical specimens. Int J Syst Evol Microbiol 57:2513–2518 [View Article][PubMed]
    [Google Scholar]
  15. Kämpfer P., Scholz H., Huber B., Thummes K., Busse H.-J., Maas E. W., Falsen E. 2007b; Description of Pseudochrobactrum kiredjianiae sp. nov.. Int J Syst Evol Microbiol 57:755–760 [View Article][PubMed]
    [Google Scholar]
  16. Kämpfer P., Sessitsch A., Schloter M., Huber B., Busse H.-J., Scholz H. C. 2008; Ochrobactrum rhizosphaerae sp. nov. and Ochrobactrum thiophenivorans sp. nov., isolated from the environment. Int J Syst Evol Microbiol 58:1426–1431 [View Article][PubMed]
    [Google Scholar]
  17. Kämpfer P., Huber B., Busse H.-J., Scholz H. C., Tomaso H., Hotzel H., Melzer F. 2011; Ochrobactrum pecoris sp. nov., isolated from farm animals. Int J Syst Evol Microbiol 61:2278–2283 [View Article][PubMed]
    [Google Scholar]
  18. Kim M. K., Im W.-T., Ohta H., Lee M., Lee S.-T. 2005; Sphingopyxis granuli sp. nov., a β-glucosidase-producing bacterium in the family Sphingomonadaceae in α-4 subclass of the Proteobacteria . J Microbiol 43:152–157[PubMed]
    [Google Scholar]
  19. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  20. Lebuhn M., Achouak W., Schloter M., Berge O., Meier H., Barakat M., Hartmann A., Heulin T. 2000; Taxonomic characterization of Ochrobactrum sp. isolates from soil samples and wheat roots, and description of Ochrobactrum tritici sp. nov. and Ochrobactrum grignonense sp. nov.. Int J Syst Evol Microbiol 50:2207–2223 [View Article][PubMed]
    [Google Scholar]
  21. Lee M., Ten L. N., Lee H. W., Oh H. W., Im W. T., Lee S.-T. 2008; Sphingopyxis ginsengisoli sp. nov., isolated from soil of a ginseng field in South Korea. Int J Syst Evol Microbiol 58:2342–2347 [View Article][PubMed]
    [Google Scholar]
  22. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  23. Minnikin D. E., O’Donnell A. G., Goodfellow M., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [View Article]
    [Google Scholar]
  24. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2–11 Edited by Ausubel F. W., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  25. Poly F., Monrozier L. J., Bally R. 2001; Improvement in the RFLP procedure for studying the diversity of nifH genes in communities of nitrogen fixers in soil. Res Microbiol 152:95–103 [View Article][PubMed]
    [Google Scholar]
  26. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  27. Sasser M. 1990; Identification of bacteria through fatty acid analysis. In Methods in Phytobacteriology pp. 199–204 Edited by Klement Z., Rudolph K., Sands D. C. Budapest: Akademiai Kaido;
    [Google Scholar]
  28. Schenkel E., Berlaimont V., Dubois J., Helson-Cambier M., Hanocq M. 1995; Improved high-performance liquid chromatographic method for the determination of polyamines as their benzoylated derivatives: application to P388 cancer cells. J Chromatogr B Biomed Appl 668:189–197 [View Article][PubMed]
    [Google Scholar]
  29. Scholz H. C., Tomaso H., Al Dahouk S. A., Witte A., Schloter M., Kämpfer P., Falsen E., Neubauer H. 2006; Genotyping of Ochrobactrum anthropi by recA-based comparative sequence, PCR-RFLP, and 16S rRNA gene analysis. FEMS Microbiol Lett 257:7–16 [View Article][PubMed]
    [Google Scholar]
  30. Scholz H. C., Al Dahouk S., Tomaso H., Neubauer H., Witte A., Schloter M., Kämpfer P., Falsen E., Pfeffer M., Engel M. 2008; Genetic diversity and phylogenetic relationships of bacteria belonging to the Ochrobactrum–Brucella group by recA and 16S rRNA gene-based comparative sequence analysis. Syst Appl Microbiol 31:1–16 [View Article][PubMed]
    [Google Scholar]
  31. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  32. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  33. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetic analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  34. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [View Article][PubMed]
    [Google Scholar]
  35. Ten L. N., Baek S.-H., Im W.-T., Liu Q.-M., Aslam Z., Lee S.-T. 2006; Bacillus panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 56:2861–2866 [View Article][PubMed]
    [Google Scholar]
  36. Teyssier C., Marchandin H., Siméon De Buochberg M., Ramuz M., Jumas-Bilak E. 2003; Atypical 16S rRNA gene copies in Ochrobactrum intermedium strains reveal a large genomic rearrangement by recombination between rrn copies. J Bacteriol 185:2901–2909 [View Article][PubMed]
    [Google Scholar]
  37. Teyssier C., Marchandin H., Jean-Pierre H., Masnou A., Dusart G., Jumas-Bilak E. 2007; Ochrobactrum pseudintermedium sp. nov., a novel member of the family Brucellaceae, isolated from human clinical samples. Int J Syst Evol Microbiol 57:1007–1013[PubMed] [CrossRef]
    [Google Scholar]
  38. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  39. Tindall J. B., Sikorski J., Simbert A. R., Krieg R. N. 2007; Phenotypic characterization and the principles of comparative systematics. In Methods for General and Molecular Microbiology, 3rd edn. pp. 330–393 Edited by Reddy C. A., Beveridge T. J., Breznak J. A., Marzluf G. A., Schmidt T. M., Snyder L. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  40. Tripathi A. K., Verma S. C., Chowdhury S. P., Lebuhn M., Gattinger A., Schloter M. 2006; Ochrobactrum oryzae sp. nov., an endophytic bacterial species isolated from deep-water rice in India. Int J Syst Evol Microbiol 56:1677–1680 [View Article][PubMed]
    [Google Scholar]
  41. Trujillo M. E., Willems A., Abril A., Planchuelo A. M., Rivas R., Ludeña D., Mateos P. F., Martínez-Molina E., Velázquez E. 2005; Nodulation of Lupinus albus by strains of Ochrobactrum lupini sp. nov.. Appl Environ Microbiol 71:1318–1327 [View Article][PubMed]
    [Google Scholar]
  42. Velasco J., Romero C., López-Goñi I., Leiva J., Díaz R., Moriyón I. 1998; Evaluation of the relatedness of Brucella spp. and Ochrobactrum anthropi and description of Ochrobactrum intermedium sp. nov., a new species with a closer relationship to Brucella spp.. Int J Syst Bacteriol 48:759–768 [View Article][PubMed]
    [Google Scholar]
  43. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  44. Zurdo-Piñeiro J. L., Rivas R., Trujillo M. E., Vizcaíno N., Carrasco J. A., Chamber M., Palomares A., Mateos P. F., Martínez-Molina E., Velázquez E. 2007; Ochrobactrum cytisi sp. nov., isolated from nodules of Cytisus scoparius in Spain. Int J Syst Evol Microbiol 57:784–788 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025510-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025510-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error