1887

Abstract

A novel moderately thermophilic, hydrogenotrophic, sulfate-reducing bacterium, strain 6N (=DSM 15269=CIP 107713), was isolated from matrixes of and originating from deep-sea hydrothermal-vent samples collected on the 13°N East-Pacific Rise at a depth of approximately 2600 m. It was a Gram-negative, non-sporulating, curved rod, motile with one polar flagellum, that did not possess desulfoviridin. It grew at temperatures ranging from 30 to 60 °C, with an optimum at 45 °C, in the presence of 0–5 % NaCl (optimum 2 %). Strain 6N utilized only H/CO and formate as electron donors with acetate as carbon source. Sulfate, sulfite, thiosulfate and elemental sulfur were used as terminal electron acceptors during hydrogen oxidation. The G+C content of DNA was 34·4 mol%. Strain 6N grouped with members of the family in the -subclass of the . Its closest phylogenetic relative was , with only 90 % similarity between the sequences of the genes encoding 16S rRNA. Because of significant phylogenetic differences from all sulfate-reducing bacteria described so far in the domain , this novel thermophile is proposed to be assigned to a new genus and species, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02551-0
2003-09-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531585.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02551-0&mimeType=html&fmt=ahah

References

  1. Alazard, D., Dukan, S., Urios, A., Verhé, F., Bouabida, N., Morel, F., Thomas, P., Garcia, J.-L. & Ollivier, B. ( 2003; ). Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53, 173–178.[CrossRef]
    [Google Scholar]
  2. Balch, W. E., Fox, G. E., Magrum, R. J., Woese, C. R. & Wolfe, R. S. ( 1979; ). Methanogens: reevaluation of a unique biological group. Microbiol Rev 43, 260–296.
    [Google Scholar]
  3. Benson, D. A., Boguski, M. S., Lipman, D. J., Ostell, J., Ouellette, B. F., Rapp, B. A. & Wheeler, D. L. ( 1999; ). GenBank. Nucleic Acids Res 27, 12–17.[CrossRef]
    [Google Scholar]
  4. Burggraf, S., Jannasch, H. W., Nicolaus, B. & Stetter, K. O. ( 1990; ). Archaeoglobus profundus sp. nov., represents a new species within the sulfur-reducing Archaebacteria. Syst Appl Microbiol 13, 24–28.[CrossRef]
    [Google Scholar]
  5. Chevaldonné, P., Desbruyères, D. & Childress, J. J. ( 1992; ). Some like it hot… and some even hotter. Nature 359, 593–594.
    [Google Scholar]
  6. Cord-Ruwisch, R. ( 1985; ). A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4, 33–36.[CrossRef]
    [Google Scholar]
  7. Cottrell, M. T. & Cary, S. C. ( 1999; ). Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana. Appl Environ Microbiol 65, 1127–1132.
    [Google Scholar]
  8. Devereux, R. & Stahl, D. A. ( 1993; ). Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities. In The Sulfate-Reducing Bacteria: Contemporary Perspectives, pp. 131–160. Edited by J. M. Odom & R. Singleton. New York: Springer.
  9. Elsgaard, L., Isaksen, M. F., Jørgensen, B. B., Alayse, A.-M. & Jannasch, H. W. ( 1994; ). Microbial sulfate reduction in deep-sea sediments at Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58, 3335–3343.[CrossRef]
    [Google Scholar]
  10. Elsgaard, L., Guezennec, J., Benbouzid-Rollet, N. & Prieur, D. ( 1995; ). Mesophilic sulfate-reducing bacteria from three deep-sea hydrothermal vent sites. Oceanol Acta 18, 95–104.
    [Google Scholar]
  11. Fardeau, M.-L., Cayol, J.-L., Magot, M. & Ollivier, B. ( 1993; ). H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 13, 327–332.
    [Google Scholar]
  12. Fardeau, M.-L., Ollivier, B., Patel, B. K. C., Magot, M., Thomas, P., Rimbault, A., Rocchiccioli, F. & Garcia, J.-L. ( 1997; ). Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47, 1013–1019.[CrossRef]
    [Google Scholar]
  13. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  14. Hall, T. A. ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41, 95–98.
    [Google Scholar]
  15. Hernandez-Eugenio, G., Fardeau, M.-L., Patel, B. K. C., Macarie, H., Garcia, J.-L. & Ollivier, B. ( 2000; ). Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6, 305–312.[CrossRef]
    [Google Scholar]
  16. Huber, H., Jannasch, H., Rachel, R., Fuchs, T. & Stetter, K. O. ( 1997; ). Archaeoglobus veneficus sp. nov., a novel facultative chemolithotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20, 374–380.[CrossRef]
    [Google Scholar]
  17. Hungate, R. E. ( 1969; ). A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B, 117–132.
    [Google Scholar]
  18. Imhoff-Stuckle, D. & Pfennig, N. ( 1983; ). Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136, 194–198.[CrossRef]
    [Google Scholar]
  19. Jannasch, H. W. & Mottl, J. ( 1985; ). Geomicrobiology and deep sea hydrothermal vents. Science 229, 717–725.[CrossRef]
    [Google Scholar]
  20. Jeanthon, C. ( 2000; ). Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77, 117–133.[CrossRef]
    [Google Scholar]
  21. Jeanthon, C., L'Haridon, S., Cueff, V., Banta, A., Reysenbach, A.-L. & Prieur, D. ( 2002; ). Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium. Int J Syst Evol Microbiol 52, 765–772.[CrossRef]
    [Google Scholar]
  22. Jorgensen, B., Isaksen, M. F. & Jannasch, H. W. ( 1992; ). Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258, 1756–1757.[CrossRef]
    [Google Scholar]
  23. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  24. Kimura, M. ( 1980; ). A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16, 111–120.[CrossRef]
    [Google Scholar]
  25. Kuever, J., Rainey, F. A. & Widdel, F. ( 2003; ). Family Desulfohalobiaceae. In Bergey's Manual of Systematic Bacteriology, 2nd edn, vol. 2. Edited by G. M. Garrity. New York: Springer (in press).
  26. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  27. Ollivier, B., Hatchikian, C. E., Prensier, G., Guezennec, J. & Garcia, J.-L. ( 1991; ). Desulfohalobium retbaense gen. nov., sp. nov., a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41, 74–81.[CrossRef]
    [Google Scholar]
  28. Pfennig, N. & Widdel, F. ( 1981; ). Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In Biology of Inorganic Nitrogen and Sulfur, pp. 169–177. Edited by H. Bothe & A. Trebst. Berlin: Springer.
  29. Postgate, J. R. ( 1959; ). A diagnostic reaction of Desulphovibrio desulphuricans. Nature 183, 481–482.
    [Google Scholar]
  30. Reysenbach, A. L., Longnecker, K. & Kirshtein, J. ( 2000; ). Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66, 3798–3806.[CrossRef]
    [Google Scholar]
  31. Rueter, P., Rabus, R., Wilkes, H., Aeckersberg, F., Rainey, F. A., Jannasch, H. W. & Widdel, F. ( 1994; ). Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372, 455–458.[CrossRef]
    [Google Scholar]
  32. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  33. Stetter, K. O., Huber, R., Blochl, E., Kurr, M., Eden, R. D., Fielder, M., Cash, H. & Vance, I. ( 1993; ). Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365, 743–745.[CrossRef]
    [Google Scholar]
  34. Wagner, M., Roger, A. J., Flax, J. L., Brusseau, G. A. & Stahl, D. A. ( 1998; ). Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180, 2975–2982.
    [Google Scholar]
  35. Widdel, F. & Pfennig, N. ( 1981; ). Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov., sp. nov. Arch Microbiol 129, 395–400.[CrossRef]
    [Google Scholar]
  36. Zhilina, T. N., Zavarzin, G. A., Rainey, F. A., Pikuta, E. N., Osipov, G. A. & Kostrikina, N. A. ( 1997; ). Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47, 144–149.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02551-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02551-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error