1887

Abstract

A novel moderately thermophilic, hydrogenotrophic, sulfate-reducing bacterium, strain 6N (=DSM 15269=CIP 107713), was isolated from matrixes of and originating from deep-sea hydrothermal-vent samples collected on the 13°N East-Pacific Rise at a depth of approximately 2600 m. It was a Gram-negative, non-sporulating, curved rod, motile with one polar flagellum, that did not possess desulfoviridin. It grew at temperatures ranging from 30 to 60 °C, with an optimum at 45 °C, in the presence of 0–5 % NaCl (optimum 2 %). Strain 6N utilized only H/CO and formate as electron donors with acetate as carbon source. Sulfate, sulfite, thiosulfate and elemental sulfur were used as terminal electron acceptors during hydrogen oxidation. The G+C content of DNA was 34·4 mol%. Strain 6N grouped with members of the family in the -subclass of the . Its closest phylogenetic relative was , with only 90 % similarity between the sequences of the genes encoding 16S rRNA. Because of significant phylogenetic differences from all sulfate-reducing bacteria described so far in the domain , this novel thermophile is proposed to be assigned to a new genus and species, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02551-0
2003-09-01
2024-10-09
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531585.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02551-0&mimeType=html&fmt=ahah

References

  1. Alazard D., Dukan S., Urios A., Verhé F., Bouabida N., Morel F., Thomas P., Garcia J.-L., Ollivier B. 2003; Desulfovibrio hydrothermalis sp. nov., a novel sulfate-reducing bacterium isolated from hydrothermal vents. Int J Syst Evol Microbiol 53:173–178 [CrossRef]
    [Google Scholar]
  2. Balch W. E., Fox G. E., Magrum R. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  3. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F., Rapp B. A., Wheeler D. L. 1999; GenBank. Nucleic Acids Res 27:12–17 [CrossRef]
    [Google Scholar]
  4. Burggraf S., Jannasch H. W., Nicolaus B., Stetter K. O. 1990; Archaeoglobus profundus sp. nov., represents a new species within the sulfur-reducing Archaebacteria . Syst Appl Microbiol 13:24–28 [CrossRef]
    [Google Scholar]
  5. Chevaldonné P., Desbruyères D., Childress J. J. 1992; Some like it hot… and some even hotter. Nature 359:593–594
    [Google Scholar]
  6. Cord-Ruwisch R. 1985; A quick method for the determination of dissolved and precipitated sulfides in cultures of sulfate-reducing bacteria. J Microbiol Methods 4:33–36 [CrossRef]
    [Google Scholar]
  7. Cottrell M. T., Cary S. C. 1999; Diversity of dissimilatory bisulfite reductase genes of bacteria associated with the deep-sea hydrothermal vent polychaete annelid Alvinella pompejana . Appl Environ Microbiol 65:1127–1132
    [Google Scholar]
  8. Devereux R., Stahl D. A. 1993; Phylogeny of sulfate-reducing bacteria and a perspective for analyzing their natural communities. In The Sulfate-Reducing Bacteria: Contemporary Perspectives pp 131–160Edited by Odom J. M., Singleton R. New York: Springer;
    [Google Scholar]
  9. Elsgaard L., Isaksen M. F., Jørgensen B. B., Alayse A.-M., Jannasch H. W. 1994; Microbial sulfate reduction in deep-sea sediments at Guaymas Basin hydrothermal vent area: influence of temperature and substrates. Geochim Cosmochim Acta 58:3335–3343 [CrossRef]
    [Google Scholar]
  10. Elsgaard L., Guezennec J., Benbouzid-Rollet N., Prieur D. 1995; Mesophilic sulfate-reducing bacteria from three deep-sea hydrothermal vent sites. Oceanol Acta 18:95–104
    [Google Scholar]
  11. Fardeau M.-L., Cayol J.-L., Magot M., Ollivier B. 1993; H2 oxidation in the presence of thiosulfate by a Thermoanaerobacter strain isolated from an oil-producing well. FEMS Microbiol Lett 13:327–332
    [Google Scholar]
  12. Fardeau M.-L., Ollivier B., Patel B. K. C., Magot M., Thomas P., Rimbault A., Rocchiccioli F., Garcia J.-L. 1997; Thermotoga hypogea sp. nov., a xylanolytic, thermophilic bacterium from an oil-producing well. Int J Syst Bacteriol 47:1013–1019 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  14. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  15. Hernandez-Eugenio G., Fardeau M.-L., Patel B. K. C., Macarie H., Garcia J.-L., Ollivier B. 2000; Desulfovibrio mexicanus sp. nov., a sulfate-reducing bacterium isolated from an upflow anaerobic sludge blanket (UASB) reactor treating cheese wastewaters. Anaerobe 6:305–312 [CrossRef]
    [Google Scholar]
  16. Huber H., Jannasch H., Rachel R., Fuchs T., Stetter K. O. 1997; Archaeoglobus veneficus sp. nov., a novel facultative chemolithotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smokers. Syst Appl Microbiol 20:374–380 [CrossRef]
    [Google Scholar]
  17. Hungate R. E. 1969; A roll tube method for the cultivation of strict anaerobes. Methods Microbiol 3B:117–132
    [Google Scholar]
  18. Imhoff-Stuckle D., Pfennig N. 1983; Isolation and characterization of a nicotinic acid-degrading sulfate-reducing bacterium, Desulfococcus niacini sp. nov. Arch Microbiol 136:194–198 [CrossRef]
    [Google Scholar]
  19. Jannasch H. W., Mottl J. 1985; Geomicrobiology and deep sea hydrothermal vents. Science 229:717–725 [CrossRef]
    [Google Scholar]
  20. Jeanthon C. 2000; Molecular ecology of hydrothermal vent microbial communities. Antonie van Leeuwenhoek 77:117–133 [CrossRef]
    [Google Scholar]
  21. Jeanthon C., L'Haridon S., Cueff V., Banta A., Reysenbach A.-L., Prieur D. 2002; Thermodesulfobacterium hydrogeniphilum sp. nov., a thermophilic, chemolithoautotrophic, sulfate-reducing bacterium isolated from a deep-sea hydrothermal vent at Guaymas Basin, and emendation of the genus Thermodesulfobacterium . Int J Syst Evol Microbiol 52:765–772 [CrossRef]
    [Google Scholar]
  22. Jorgensen B., Isaksen M. F., Jannasch H. W. 1992; Bacterial sulfate reduction above 100 °C in deep-sea hydrothermal vent sediments. Science 258:1756–1757 [CrossRef]
    [Google Scholar]
  23. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  24. Kimura M. 1980; A simple model for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef]
    [Google Scholar]
  25. Kuever J., Rainey F. A., Widdel F. 2003; Family Desulfohalobiaceae . In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 2Edited by Garrity G. M. New York: Springer; in press
    [Google Scholar]
  26. Maidak B. L., Cole J. R., Lilburn T. G.7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  27. Ollivier B., Hatchikian C. E., Prensier G., Guezennec J., Garcia J.-L. 1991; Desulfohalobium retbaense gen. nov., sp. nov. a halophilic sulfate-reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81 [CrossRef]
    [Google Scholar]
  28. Pfennig N., Widdel F. 1981; Ecology and physiology of some anaerobic bacteria from the microbial sulfur cycle. In Biology of Inorganic Nitrogen and Sulfur pp 169–177Edited by Bothe H., Trebst A. Berlin: Springer;
    [Google Scholar]
  29. Postgate J. R. 1959; A diagnostic reaction of Desulphovibrio desulphuricans . Nature 183:481–482
    [Google Scholar]
  30. Reysenbach A. L., Longnecker K., Kirshtein J. 2000; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  31. Rueter P., Rabus R., Wilkes H., Aeckersberg F., Rainey F. A., Jannasch H. W., Widdel F. 1994; Anaerobic oxidation of hydrocarbons in crude oil by new types of sulphate-reducing bacteria. Nature 372:455–458 [CrossRef]
    [Google Scholar]
  32. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  33. Stetter K. O., Huber R., Blochl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745 [CrossRef]
    [Google Scholar]
  34. Wagner M., Roger A. J., Flax J. L., Brusseau G. A., Stahl D. A. 1998; Phylogeny of dissimilatory sulfite reductases supports an early origin of sulfate respiration. J Bacteriol 180:2975–2982
    [Google Scholar]
  35. Widdel F., Pfennig N. 1981; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. I. Isolation of new sulfate-reducing bacteria enriched with acetate from saline environments. Description of Desulfobacter postgatei gen. nov. sp. nov. Arch Microbiol 129:395–400 [CrossRef]
    [Google Scholar]
  36. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic sulfate reducing bacterium. Int J Syst Bacteriol 47:144–149 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02551-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02551-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error