1887

Abstract

A bacterial strain, designated an-8, was isolated from a freshwater shrimp culture pond in Taiwan and characterized using a polyphasic taxonomic approach. Cells of strain an-8 were Gram-reaction-negative, aerobic, rod-shaped and non-motile, formed yellow-pigmented colonies and grew at 15–30 °C (optimum 25 °C), pH 7–8 (optimum pH 8.0) and in 0–1 % (w/v) NaCl (optimum 0 %). Phylogenetic analyses based on 16S rRNA gene sequences showed that strain an-8 belonged to the genus and its most closely related neighbours were DS-20 and R2A1-13 with sequence similarities of 95.1 and 94.9 %, respectively. Strain an-8 contained iso-C, summed feature 3 (Cω6 and/or Cω7), iso-C 3-OH, iso-C 3-OH, iso-C 3-OH and iso-C as the major fatty acids. The major isoprenoid quinone was MK-6. The polar lipid profile consisted of a mixture of phosphatidylethanolamine, phosphatidyldimethylethanolamine, phosphatidylserine and several unidentified polar lipids. The G+C content of the genomic DNA was 39.8 mol%. On the basis of the phylogenetic and phenotypic data, strain an-8 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is an-8 ( = BCRC 17965  = LMG 25203).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025403-0
2011-06-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1402.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025403-0&mimeType=html&fmt=ahah

References

  1. Bergey D. H., Harrison F. C., Breed R. S., Hammer B. W., Huntoon F. M. (editors) 1923; Genus II. Flavobacterium gen. nov.. In Bergey’s Manual of Determinative Bacteriology, 1st edn.. pp. 97–117 Baltimore: Williams & Wilkins;
    [Google Scholar]
  2. Bernardet J.-F., Segers P., Vancanneyt M., Berthe F., Kersters K., Vandamme P. 1996; Cutting a Gordian knot: emended classification and description of the genus Flavobacterium, emended description of the family Flavobacteriaceae, and proposal of Flavobacterium hydatis nom. nov. (Basonym, Cytophaga aquatilis Strohl and Tait 1978). Int J Syst Bacteriol 46:128–148 [View Article]
    [Google Scholar]
  3. Bernardet J.-F., Nakagawa Y., Holmes B. Subcommittee on the taxonomy of Flavobacterium and Cytophaga-like bacteria of the International Committee on Systematics of Prokaryotes 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  4. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  5. Chen W. M., Laevens S., Lee T. M., Coenye T., De Vos P., Mergeay M., Vandamme P. 2001; Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. Int J Syst Evol Microbiol 51:1729–1735[PubMed] [CrossRef]
    [Google Scholar]
  6. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  7. Chung Y. C., Kobayashi T., Kanai H., Akiba T., Kudo T. 1995; Purification and properties of extracellular amylase from the hyperthermophilic archeon Thermococccus profundus DT5432. Appl Environ Microbiol 61:1502–1506[PubMed]
    [Google Scholar]
  8. Collins M. D. 1985; Isoprenoid quinone analysis in classification and identification. In Chemical Methods in Bacterial Systematics pp. 267–287 Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  9. Cousin S., Päuker O., Stackebrandt E. 2007; Flavobacterium aquidurense sp. nov. and Flavobacterium hercynium sp. nov., from a hard-water creek. Int J Syst Evol Microbiol 57:243–249 [View Article][PubMed]
    [Google Scholar]
  10. Fautz E., Reichenbach J. R. 1980; A simple test for flexirubin-type pigments. FEMS Microbiol Lett 8:87–91 [View Article]
    [Google Scholar]
  11. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  12. Felsenstein, J. (1993). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  13. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. (editors) 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  14. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  15. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  16. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  17. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  18. Ludwig W., Euzéby J., Whitman W. B. 2008; The Bacteroidetes, Planctomycetes, Chlamydiae, Spirochaetes, Fibrobacteres, Fusobacteria, Acidobacteria, Verrucomicrobia, Dictyoglomi, and Gemmatimonadetes . In Bergey’s Manual of Systematic Bacteriology, 2nd edn. vol. 4. Edited by Krieg N. R., Staley J. T., Hedlund B., Paster B. J., Ward N., Ludwig W., Whitman W. B. New York: Springer;
    [Google Scholar]
  19. Maidak B. L., Cole J. R., Lilburn T. G., Parker C. T. Jr, Saxman P. R., Farris R. J., Garrity G. M., Olsen G. J., Schmidt T. M., Tiedje J. M. 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [View Article][PubMed]
    [Google Scholar]
  20. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  21. Nokhal T. H., Schlegel H. G. 1983; Taxonomic study of Paracoccus denitrijicans . Int J Syst Bacteriol 33:26–37 [View Article]
    [Google Scholar]
  22. Powers E. M. 1995; Efficacy of the Ryu nonstaining KOH technique for rapidly determining Gram reactions of food-borne and waterborne bacteria and yeasts. Appl Environ Microbiol 61:3756–3758[PubMed]
    [Google Scholar]
  23. Qu J. H., Yuan H. L., Li H. F., Deng C. P. 2009; Flavobacterium cauense sp. nov., isolated from sediment of a eutrophic lake. Int J Syst Evol Microbiol 59:2666–2669 [View Article][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  25. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids. Newark, DE: MIDI Inc.
  26. Tamaki H., Hanada S., Kamagata Y., Nakamura K., Nomura N., Nakano K., Matsumura M. 2003; Flavobacterium limicola sp. nov., a psychrophilic, organic-polymer-degrading bacterium isolated from freshwater sediments. Int J Syst Evol Microbiol 53:519–526 [View Article][PubMed]
    [Google Scholar]
  27. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  28. Van Trappen S., Mergaert J., Swings J. 2003; Flavobacterium gelidilacus sp. nov., isolated from microbial mats in Antarctic lakes. Int J Syst Evol Microbiol 53:1241–1245 [View Article][PubMed]
    [Google Scholar]
  29. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of “Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [View Article][PubMed]
    [Google Scholar]
  30. Wang Z.-W., Liu Y.-H., Dai X., Wang B.-J., Jiang C.-Y., Liu S.-J. 2006; Flavobacterium saliperosum sp. nov., isolated from freshwater lake sediment. Int J Syst Evol Microbiol 56:439–442 [View Article][PubMed]
    [Google Scholar]
  31. Weon H. Y., Song M. H., Son J. A., Kim B. Y., Kwon S. W., Go S. J., Stackebrandt E. 2007; Flavobacterium terrae sp. nov. and Flavobacterium cucumis sp. nov., isolated from greenhouse soil. Int J Syst Evol Microbiol 57:1594–1598 [View Article][PubMed]
    [Google Scholar]
  32. Yi H., Oh H.-M., Lee J.-H., Kim S.-J., Chun J. 2005; Flavobacterium antarcticum sp. nov., a novel psychrotolerant bacterium isolated from the Antarctic. Int J Syst Evol Microbiol 55:637–641 [View Article][PubMed]
    [Google Scholar]
  33. Yoon J. H., Kang S. J., Lee J. S., Oh T. K. 2007; Flavobacterium terrigena sp. nov., isolated from soil. Int J Syst Evol Microbiol 57:947–950 [View Article][PubMed]
    [Google Scholar]
  34. Yoon H. S., Aslam Z., Song G. C., Kim S. W., Jeon C. O., Chon T. S., Chung Y. R. 2009; Flavobacterium sasangense sp. nov., isolated from a wastewater stream polluted with heavy metals. Int J Syst Evol Microbiol 59:1162–1166 [Retraction: Int J Syst Evol Microbiol (2010), 60, 267–268] [View Article][PubMed]
    [Google Scholar]
  35. Zhu F., Wang S., Zhou P. J. 2003; Flavobacterium xinjiangense sp. nov. and Flavobacterium omnivorum sp. nov., novel psychrophiles from the China No. 1 glacier. Int J Syst Evol Microbiol 53:853–857 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025403-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025403-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error