1887

Abstract

A Gram-stain-positive, endospore-forming, rod-shaped bacterium, designated XJ259, was isolated from a cold spring sample from Xinjiang Uyghur Autonomous Region, China. The isolate grew optimally at 20–30 °C and pH 7.3–7.8. Comparative analysis of the 16S rRNA gene sequence showed that isolate XJ259 belonged phylogenetically to the genus , and was most closely related to B538 (with 96.6 % sequence similarity), DS-1 (96.3 %) and Ch-32 (96.1 %), sharing less than 96.0 % sequence similarity with all other members of the genus . Chemotaxonomic analysis revealing menaquinone-7 (MK-7) as the major isoprenoid quinone, diphosphatidylglycerol, phosphatidylethanolamine and two unknown phosphoglycolipids as the major cellular polar lipids, a DNA G+C content of 47.0 mol%, and anteiso-C and C as the major fatty acids supported affiliation of the new isolate to the genus . Based on these data, isolate XJ259 is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is XJ259 ( = CGMCC 1.10223  = JCM 16598).

Funding
This study was supported by the:
  • , National Basic Research Program of China , (Award 2010CB833800)
  • , High-Tech Research and Development Program of China , (Award 2007AA021300)
  • , Chinese Ministry of Agriculture , (Award 200803034)
  • , National Natural Science Foundation of China , (Award 30700015)
  • , National 863 Project , (Award 2007AA09Z443 and 2006AA09Z402)
  • , Chinese Academy of Sciences Innovation Project , (Award O62A131BB4)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025346-0
2011-09-01
2021-03-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2167.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025346-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef][PubMed]
    [Google Scholar]
  2. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260 [CrossRef][PubMed]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1994; Paenibacillus gen nov. In Validation of the Publication of New Names and New Combinations Previously Effectively Published Outside the IJSB, List no. 51. Int J Syst Bacteriol 44:852 [CrossRef]
    [Google Scholar]
  4. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel's Manual for Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  5. Berge O., Guinebretière M. H., Achouak W., Normand P., Heulin T. 2002; Paenibacillus graminis sp. nov. and Paenibacillus odorifer sp. nov., isolated from plant roots, soil and food. Int J Syst Evol Microbiol 52:607–616[PubMed]
    [Google Scholar]
  6. Chou J.-H., Chou Y.-J., Lin K.-Y., Sheu S.-Y., Sheu D.-S., Arun A.-B., Young C.-C., Chen W.-M. 2007; Paenibacillus fonticola sp. nov., isolated from a warm spring. Int J Syst Evol Microbiol 57:1346–1350 [CrossRef][PubMed]
    [Google Scholar]
  7. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  8. Claus D., Berkeley R. C. W. 1986; Genus Bacillus Cohn 1872, 174AL . In Bergey’s Manual of Systematic Bacteriology vol. 2 pp. 1105–1139 Edited by Sneath P. H. A., Mair N. S., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  9. Collins M. D., Goodfellow M., Minnikin D. E. 1980; Fatty acid, isoprenoid quinone and polar lipid composition in the classification of Curtobacterium and related taxa. J Gen Microbiol 118:29–37[PubMed]
    [Google Scholar]
  10. Daane L. L., Harjono I., Barns S. M., Launen L. A., Palleron N. J., Häggblom M. M. 2002; PAH-degradation by Paenibacillus spp. and description of Paenibacillus naphthalenovorans sp. nov., a naphthalene-degrading bacterium from the rhizosphere of salt marsh plants. Int J Syst Evol Microbiol 52:131–139[PubMed]
    [Google Scholar]
  11. Dasman K., Kajiyama S., Kawasaki H., Yagi M., Seki T., Fukusaki E., Kobayashi A. 2002; Paenibacillus glycanilyticus sp. nov., a novel species that degrades heteropolysaccharide produced by the cyanobacterium Nostoc commune . Int J Syst Evol Microbiol 52:1669–1674 [CrossRef][PubMed]
    [Google Scholar]
  12. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  13. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  14. Felsenstein J. 2002 phylip (phylogenetic inference package), version 3.6a. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA
  15. Gomori G. 1955; Preparation of buffers for use in enzyme studies. Methods Enzymol 1:138–146 [CrossRef]
    [Google Scholar]
  16. Guindon S., Lethiec F., Duroux P., Gascuel O. 2005; phyml online–a web server for fast maximum likelihood-based phylogenetic inference. Nucleic Acids Res 33:Web Server issueW557–W559 [CrossRef][PubMed]
    [Google Scholar]
  17. Hucker G. J. 1921; A new modification and application of the Gram stain. J Bacteriol 6:395–397[PubMed]
    [Google Scholar]
  18. Jeon C. O., Lim J.-M., Lee J.-M., Xu L.-H., Jiang C.-L., Kim C.-J. 2005; Reclassification of Bacillus haloalkaliphilus Fritze 1996 as Alkalibacillus haloalkaliphilus gen. nov., comb. nov. and the description of Alkalibacillus salilacus sp. nov., a novel halophilic bacterium isolated from a salt lake in China. Int J Syst Evol Microbiol 55:1891–1896 [CrossRef][PubMed]
    [Google Scholar]
  19. Judicial Commission of the International Committee for Systematics of Prokaryotes 2005; The type species of the genus Paenibacillus Ash et al. 1994 is Paenibacillus polymyxa. Opinion 77. Int J Syst Evol Microbiol 55:513 [CrossRef][PubMed]
    [Google Scholar]
  20. Kates M. 1986 Techniques of Lipidology, 2nd edn. Amsterdam: Elsevier;
    [Google Scholar]
  21. Kim B.-C., Jeong W.-J., Kim D. Y., Oh H.-W., Kim H., Park D.-S., Park H.-M., Bae K. S. 2009; Paenibacillus pueri sp. nov., isolated from Pu’er tea. Int J Syst Evol Microbiol 59:1002–1006 [CrossRef][PubMed]
    [Google Scholar]
  22. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  23. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  24. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and evolution of anurans. Syst Zool 18:1–4 [CrossRef]
    [Google Scholar]
  25. Ko K. S., Kim Y.-S., Lee M. Y., Shin S. Y., Jung D. S., Peck K. R., Song J.-H. 2008; Paenibacillus konsidensis sp. nov., isolated from a patient. Int J Syst Evol Microbiol 58:2164–2168 [CrossRef][PubMed]
    [Google Scholar]
  26. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [CrossRef]
    [Google Scholar]
  27. Kuisiene N., Raugalas J., Spröer C., Kroppenstedt R. M., Stuknyte M., Chitavichius D. 2008; Paenibacillus tylopili sp. nov., a chitinolytic bacterium isolated from the mycorhizosphere of Tylopilus felleus . Folia Microbiol (Praha) 53:433–437 [CrossRef][PubMed]
    [Google Scholar]
  28. Kumar S., Nei M., Dudley J., Tamura K. 2008; mega: a biologist-centric software for evolutionary analysis of DNA and protein sequences. Brief Bioinform 9:299–306 [CrossRef][PubMed]
    [Google Scholar]
  29. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  30. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184[PubMed]
    [Google Scholar]
  31. Lim J.-M., Jeon C. O., Park D.-J., Xu L.-H., Jiang C.-L., Kim C.-J. 2006; Paenibacillus xinjiangensis sp. nov., isolated from Xinjiang province in China. Int J Syst Evol Microbiol 56:2579–2582 [CrossRef][PubMed]
    [Google Scholar]
  32. Mandel M., Marmur J. 1968; Use of ultraviolet absorbance temperature profile for determining the guanine plus cytosine content of DNA. Methods Enzymol 12B:195–206 [CrossRef]
    [Google Scholar]
  33. Montes M. J., Mercadé E., Bozal N., Guinea J. 2004; Paenibacillus antarcticus sp. nov., a novel psychrotolerant organism from the Antarctic environment. Int J Syst Evol Microbiol 54:1521–1526 [CrossRef][PubMed]
    [Google Scholar]
  34. Park D.-S., Jeong W.-J., Lee K. H., Oh H.-W., Kim B.-C., Bae K. S., Park H.-Y. 2009; Paenibacillus pectinilyticus sp. nov., isolated from the gut of Diestrammena apicalis . Int J Syst Evol Microbiol 59:1342–1347 [CrossRef][PubMed]
    [Google Scholar]
  35. Rivas R., Mateos P. F., Martínez-Molina E., Velázquez E. 2005; Paenibacillus phyllosphaerae sp. nov., a xylanolytic bacterium isolated from the phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 55:743–746 [CrossRef][PubMed]
    [Google Scholar]
  36. Rivas R., García-Fraile P., Mateos P. F., Martínez-Molina E., Velázquez E. 2006; Paenibacillus cellulosilyticus sp. nov., a cellulolytic and xylanolytic bacterium isolated from the bract phyllosphere of Phoenix dactylifera . Int J Syst Evol Microbiol 56:2777–2781 [CrossRef][PubMed]
    [Google Scholar]
  37. Roux V., Raoult D. 2004; Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54:1049–1054 [CrossRef][PubMed]
    [Google Scholar]
  38. Roux V., Fenner L., Raoult D. 2008; Paenibacillus provencensis sp. nov., isolated from human cerebrospinal fluid, and Paenibacillus urinalis sp. nov., isolated from human urine. Int J Syst Evol Microbiol 58:682–687 [CrossRef][PubMed]
    [Google Scholar]
  39. Saha P., Mondal A. K., Mayilraj S., Krishnamurthi S., Bhattacharya A., Chakrabarti T. 2005; Paenibacillus assamensis sp. nov., a novel bacterium isolated from a warm spring in Assam, India. Int J Syst Evol Microbiol 55:2577–2581 [CrossRef][PubMed]
    [Google Scholar]
  40. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  41. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  42. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus . Int J Syst Bacteriol 47:289–298 [CrossRef][PubMed]
    [Google Scholar]
  43. Smibert R. M., Krieg N. R. 1981; General characterization. In Manual of Methods for General Bacteriology pp. 409–443 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  44. Takeda M., Suzuki I., Koizumi J. 2005; Paenibacillus hodogayensis sp. nov., capable of degrading the polysaccharide produced by Sphaerotilus natans. Int J Syst Evol Microbiol 55:737–741 [CrossRef][PubMed]
    [Google Scholar]
  45. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  46. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  47. Valverde A., Peix A., Rivas R., Velázquez E., Salazar S., Santa-Regina I., Rodríguez-Barrueco C., Igual J. M. 2008; Paenibacillus castaneae sp. nov., isolated from the phyllosphere of Castanea sativa Miller. Int J Syst Evol Microbiol 58:2560–2564 [CrossRef][PubMed]
    [Google Scholar]
  48. Velázquez E., de Miguel T., Poza M., Rivas R., Rosselló-Mora R., Villa T. G. 2004; Paenibacillus favisporus sp. nov., a xylanolytic bacterium isolated from cow faeces. Int J Syst Evol Microbiol 54:59–64 [CrossRef][PubMed]
    [Google Scholar]
  49. Yoon J.-H., Kang S.-J., Yeo S.-H., Oh T.-K. 2005; Paenibacillus alkaliterrae sp. nov., isolated from an alkaline soil in Korea. Int J Syst Evol Microbiol 55:2339–2344 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025346-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025346-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error