1887

Abstract

Facultatively anaerobic marine bacteria isolated from cultured clams, and , were previously investigated using amplified fragment length polymorphism (AFLP) and 16S rRNA gene sequence analyses. The isolates formed two AFLP clusters and belonged to the genus , more precisely to the Splendidus clade. In this study, phylogenetic analyses based on sequences of the housekeeping genes , , , and supported their inclusion in that clade forming two well differentiated groups with respect to the rest of the species within the clade, and confirmed that they formed two groups, separated from the rest of the species of the clade. DNA–DNA hybridization demonstrated that the isolates constitute two novel species of the genus , which can be phenotypically differentiated from their closest relatives. The names sp. nov. and sp. nov. are proposed, with Vb 11.11 ( = CECT 7223  = LMG 24300) and Vb 11.8 ( = CECT 7226  = LMG 23865) as the type strains, respectively.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025320-0
2011-10-01
2019-12-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2406.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025320-0&mimeType=html&fmt=ahah

References

  1. Austin B. , Austin D. A. , Blanch A. R. , Cerda M. , Grimont P. A. D. , Jofre J. , Koblavi S. , Larsen J. L. , Pedersen K. et al. ( 1997; ). A comparison of methods for the typing of fish-pathogenic Vibrio spp. . Syst Appl Microbiol 20:, 89–101.[CrossRef]
    [Google Scholar]
  2. Beaz-Hidalgo R. , Cleenwerck I. , Balboa S. , De Wachter M. , Thompson F. L. , Swings J. , De Vos P. , Romalde J. L. . ( 2008; ). Diversity of Vibrios associated with reared clams in Galicia (NW Spain). . Syst Appl Microbiol 31:, 215–222. [CrossRef] [PubMed]
    [Google Scholar]
  3. Beaz-Hidalgo R. , Doce A. , Pascual J. , Toranzo A. E. , Romalde J. L. . ( 2009; ). Vibrio gallaecicus sp. nov. isolated from cultured clams in north-western Spain. . Syst Appl Microbiol 32:, 111–117. [CrossRef] [PubMed]
    [Google Scholar]
  4. Beaz-Hidalgo R. , Balboa S. , Romalde J. L. , Figueras M. J. . ( 2010; ). Diversity and pathogenicity of Vibrio species in cultured bivalve molluscs. . Environ Microbiol Reports 2:, 34–43. [CrossRef]
    [Google Scholar]
  5. Cleenwerck I. , Vandemeulebroecke K. , Janssens D. , Swings J. . ( 2002; ). Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:, 1551–1558. [CrossRef] [PubMed]
    [Google Scholar]
  6. Colwell R. R. . ( 2006; ). A global and historical perspective of the genus Vibrio . . In The Biology of Vibrios, pp. 3–11. Edited by Thompson F. L. , Austin B. , Swings J. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  7. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  8. Farto R. , Armada S. P. , Montes M. , Guisande J. A. , Pérez M. J. , Nieto T. P. . ( 2003; ). Vibrio lentus associated with diseased wild octopus (Octopus vulgaris). . J Invertebr Pathol 83:, 149–156. [CrossRef] [PubMed]
    [Google Scholar]
  9. Gay M. , Renault T. , Pons A. M. , Le Roux F. . ( 2004; ). Two Vibrio splendidus related strains collaborate to kill Crassostrea gigas: taxonomy and host alterations. . Dis Aquat Organ 62:, 65–74. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gómez-León J. , Villamil L. , Lemos M. L. , Novoa B. , Figueras A. . ( 2005; ). Isolation of Vibrio alginolyticus and Vibrio splendidus from aquacultured carpet shell clam (Ruditapes decussatus) larvae associated with mass mortalities. . Appl Environ Microbiol 71:, 98–104. [CrossRef] [PubMed]
    [Google Scholar]
  11. Goris J. , Suzuki K. , de Vos P. , Nakase T. , Kersters K. . ( 1998; ). Evaluation of a microplate DNA-DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  12. Jensen S. , Samuelsen O. B. , Andersen K. , Torkildsen L. , Lambert C. , Choquet G. , Paillard C. , Bergh O. . ( 2003; ). Characterization of strains of Vibrio splendidus and V. tapetis isolated from corkwing wrasse Symphodus melops suffering vibriosis. . Dis Aquat Organ 53:, 25–31. [CrossRef] [PubMed]
    [Google Scholar]
  13. Kueh C. S. W. , Chan K. Y. . ( 1985; ). Bacteria in bivalve shellfish with special reference to the oyster. . J Appl Bacteriol 59:, 41–47.[PubMed] [CrossRef]
    [Google Scholar]
  14. Lacoste A. , Jalabert F. , Malham S. , Cueff A. , Gélébart F. , Cordevant C. , Lange M. , Poulet S. A. . ( 2001; ). A Vibrio splendidus strain is associated with summer mortality of juvenile oysters Crassostrea gigas in the Bay of Morlaix (North Brittany, France). . Dis Aquat Organ 46:, 139–145. [CrossRef] [PubMed]
    [Google Scholar]
  15. Lambert C. , Nicolas J. L. , Cilia V. , Corre S. . ( 1998; ). Vibrio pectenicida sp. nov., a pathogen of scallop (Pecten maximus) larvae. . Int J Syst Bacteriol 48:, 481–487.[PubMed] [CrossRef]
    [Google Scholar]
  16. Le Roux F. , Gay M. , Lambert C. , Waechter M. , Poubalanne S. , Chollet B. , Nicolas J. L. , Berthe F. C. J. . ( 2002; ). Comparative analysis of Vibrio splendidus-related strains isolated during Crassostreae gigas mortality events. . Aquat Living Resour 15:, 251–258. [CrossRef]
    [Google Scholar]
  17. Leano E. M. , Lavilla-Pitogo C. R. , Paner M. G. . ( 1998; ). Bacterial flora in the hepatopancreas of pond reared Penaeus monodon juveniles with luminous vibriosis. . Aquaculture 164:, 367–374. [CrossRef]
    [Google Scholar]
  18. Lemos M. L. , Toranzo A. E. , Barja J. L. . ( 1985; ). Modified medium for the oxidation-fermentation test in the identification of marine bacteria. . Appl Environ Microbiol 49:, 1541–1543.[PubMed]
    [Google Scholar]
  19. MacFaddin, J. F. (1993). Pruebas Bioquímicas para la Identificación de Bacterias de Importancia Clínica (translation by Médica Panamericana SA). Baltimore, MD: Williams & Wilkins (in Spanish).
  20. Martin D. P. , Williamson C. , Posada D. . ( 2005; ). RDP2: recombination detection and analysis from sequence alignments. . Bioinformatics 21:, 260–262. [CrossRef] [PubMed]
    [Google Scholar]
  21. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  22. Nhung P. H. , Shah M. M. , Ohkusu K. , Noda M. , Hata H. , Sun X. S. , Iihara H. , Goto K. , Masaki T. , Miyasaka J. . ( 2007; ). The dnaJ gene as a novel phylogenetic marker for identification of Vibrio species. . Syst Appl Microbiol 30:, 309–315. [CrossRef] [PubMed]
    [Google Scholar]
  23. Nicolas J. L. , Corre S. , Gauthier G. , Robert R. , Ansquer D. . ( 1996; ). Bacterial problems associated with scallop Pecten maximus larval culture. . Dis Aquat Organ 27:, 67–76. [CrossRef]
    [Google Scholar]
  24. Pacini F. . ( 1854; ). Osservazione microscopiche e deduzione patologiche sul colera asiatico. . Gaz Med Italiana 6:, 405–412.
    [Google Scholar]
  25. Pascual J. , Macián M. C. , Arahal D. R. , Garay E. , Pujalte M. J. . ( 2010; ). Multilocus sequence analysis of the central clade of the genus Vibrio by using the 16S rRNA, recA, pyrH, rpoD, gyrB, rctB and toxR genes. . Int J Syst Evol Microbiol 60:, 154–165. [CrossRef] [PubMed]
    [Google Scholar]
  26. Posada D. . ( 2008; ). jModelTest: phylogenetic model averaging. . Mol Biol Evol 25:, 1253–1256. [CrossRef] [PubMed]
    [Google Scholar]
  27. Prado S. , Romalde J. L. , Montes J. , Barja J. L. . ( 2005; ). Pathogenic bacteria isolated from disease outbreaks in shellfish hatcheries. First description of Vibrio neptunius as an oyster pathogen. . Dis Aquat Organ 67:, 209–215. [CrossRef] [PubMed]
    [Google Scholar]
  28. Pujalte M. J. , Ortigosa M. , Urdaci M. C. , Garay E. , Grimont P. A. D. . ( 1993; ). Vibrio mytili sp. nov., from mussels. . Int J Syst Bacteriol 43:, 358–362. [CrossRef]
    [Google Scholar]
  29. Romalde J. L. , Toranzo A. E. . ( 1991; ). Evaluation of the API 20E system for the routine diagnosis of the enteric redmouth disease. . Bull Eur Assoc Fish Pathol 11:, 147–149.
    [Google Scholar]
  30. Sawabe T. , Kita-Tsukamoto K. , Thompson F. L. . ( 2007; ). Inferring the evolutionary history of vibrios by means of multilocus sequence analysis. . J Bacteriol 189:, 7932–7936. [CrossRef] [PubMed]
    [Google Scholar]
  31. Sobecky P. A. , Mincer T. J. , Chang M. C. , Toukdarian A. , Helinski D. R. . ( 1998; ). Isolation of broad-host-range replicons from marine sediment bacteria. . Appl Environ Microbiol 64:, 2822–2830.[PubMed]
    [Google Scholar]
  32. Sugumar G. , Nakai T. , Hirata Y. , Matsubara D. , Muroga K. . ( 1998; ). Vibrio splendidus biovar II as the causative agent of bacillary necrosis of Japanese oyster Crassostrea gigas larvae. . Dis Aquat Organ 33:, 111–118. [CrossRef] [PubMed]
    [Google Scholar]
  33. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  34. Thompson F. L. , Swings J. . ( 2006; ). Taxonomy of the vibrios. . In The Biology of Vibrios, pp. 29–43. Edited by Thompson F. L. , Austin B. , Swings J. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  35. Thompson C. C. , Thompson F. L. , Vandemeulebroecke K. , Hoste B. , Dawyndt P. , Swings J. . ( 2004; ). Use of recA as an alternative phylogenetic marker in the family Vibrionaceae . . Int J Syst Evol Microbiol 54:, 919–924. [CrossRef] [PubMed]
    [Google Scholar]
  36. Thompson F. L. , Gevers D. , Thompson C. C. , Dawyndt P. , Naser S. , Hoste B. , Munn C. B. , Swings J. . ( 2005; ). Phylogeny and molecular identification of vibrios on the basis of multilocus sequence analysis. . Appl Environ Microbiol 71:, 5107–5115. [CrossRef] [PubMed]
    [Google Scholar]
  37. Thompson C. C. , Thompson F. L. , Vicente A. C. , Swings J. . ( 2007; ). Phylogenetic analysis of vibrios and related species by means of atpA gene sequences. . Int J Syst Evol Microbiol 57:, 2480–2484. [CrossRef] [PubMed]
    [Google Scholar]
  38. Waechter M. , Le Roux F. , Nicolas J. L. , Marissal E. , Berthe F. . ( 2002; ). [Characterization of pathogenic bacteria of the cupped oyster Crassostrea gigas]. . C R Biol 325:, 231–238 (in French). [CrossRef] [PubMed]
    [Google Scholar]
  39. West P. A. , Brayton P. R. , Bryant T. N. , Colwell R. R. . ( 1986; ). Numerical taxonomy of vibrios isolated from aquatic environments. . Int J Syst Bacteriol 36:, 531–543. [CrossRef]
    [Google Scholar]
  40. Ziemke F. , Höfle M. G. , Lalucat J. , Rosselló-Mora R. . ( 1998; ). Reclassification of Shewanella putrefaciens Owen’s genomic group II as Shewanella baltica sp. nov.. Int J Syst Bacteriol 48:, 179–186. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025320-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025320-0
Loading

Data & Media loading...

Supplements

vol. , part 10, pp. 2406 - 2411

GenBank accession numbers for the 16S rRNA, , , , and gene sequences of sp. nov. strains

GenBank accession numbers for the 16S rRNA, , , , and gene sequences of sp. nov. strains

Intra- and inter-species-specific sequence similarity values between 16S rRNA, , , , and gene sequences of sp. nov. Vb 11.11 and members of the genus

Intra- and inter-species-specific sequence similarity values between 16S rRNA, , , , and gene sequences of sp. nov. Vb 11.8 and members of the genus

Intra- and inter-species-specific DNA–DNA hybridization values obtained for sp. nov. Vb 11.11 and sp. nov. Vb 11.8

Variable phenotypic characteristics for sp. nov. strains

Variable phenotypic characteristics for sp. nov. strains

Neighbour-joining and maximum-likelihood (GTR+G model) trees showing the phylogenetic position of cluster 5 strains, based on partial 16S rRNA gene sequences.

Neighbour-joining and maximum-likelihood (GTR+G model) trees showing the phylogenetic position of cluster 70 strains, based on partial 16S rRNA gene sequences.

Neighbour-joining trees showing the phylogenetic position of cluster 5 ( sp. nov.) strains, based on partial sequences of , , , and genes.

Neighbour-joining trees showing the phylogenetic position of cluster 5 ( sp. nov.) strains, based on partial sequences of , , , and genes.

Maximum-likelihood (GTR+G model) tree showing the phylogenetic position of cluster 5 ( sp. nov.) strains, based on concatenated sequences of the 16S rRNA and four housekeeping genes.

Maximum-likelihood (GTR+G model) tree showing the phylogenetic position of cluster 70 ( sp. nov.) strains, based on concatenated sequences of the 16S rRNA and five housekeeping genes.

Protein profiles of sp. nov. Vb 11.11 (a) and sp. nov. Vb 11.8 (b), obtained by MALDI-TOF MS.



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error