Skip to content
1887

Abstract

Two airborne bacterial isolates designated V45 and V54A were characterized in order to determine their taxonomic position. 16S rDNA sequence analysis showed that the two isolates shared 98·1 % sequence similarity. Highest sequence similarities (98·0–98·5 %) were found to DSM 43110 and IFO 14650. Detection of a quinone system with the predominant compound MK-9(H), a polar lipid pattern containing phosphatidylglycerol, a fatty acid profile with the predominant acids C iso and C anteiso and the diagnostic cell-wall diamino acid -lysine supported the assignment of the novel isolates to the genus . The two isolates could be distinguished from by the presence of glycine in the peptidoglycan, and the detection of the cell-wall sugar galactose differentiates them from the two established species of the genus . Each of the two isolates displayed a unique biochemical profile. Results from DNA–DNA hybridizations clearly demonstrated that V45 and V54A represent separate species. Based on these data, it is proposed that V45 (=IFO 16525=CCM 7044) and V54A (=IFO 16526 =CCM 7043) be classified as the type strains of two novel species, for which the names sp. nov. and sp. nov. are proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02522-0
2003-09-01
2025-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531503.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02522-0&mimeType=html&fmt=ahah

References

  1. Altenburger P., Kämpfer P., Makristathis A., Lubitz W., Busse H.-J. 1996; Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47:39–52 [CrossRef]
    [Google Scholar]
  2. Altenburger P., Kämpfer P., Akimov V. N., Lubitz W., Busse H.-J. 1997; Polyamine distribution in actinomycetes with group B peptidoglycan and species of the genera Brevibacterium , Corynebacterium , and Tsukamurella . Int J Syst Bacteriol 47:270–277 [CrossRef]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  4. Hamana K. 1995; Polyamine distribution patterns in coryneform bacteria and related Gram-positive eubacteria. Ann Coll Med Care Technol Gunma Univ 16:69–77
    [Google Scholar]
  5. Kalakoutskii L. V., Agre N. S., Prauser H., Evtushenko L. I. 1989; Genus Promicromonospora Krasil'nikov, Kalakoutskii and Kirillova 1961a, 107AL. In Bergey's Manual of Systematic Bacteriology vol 4 pp 2392–2395Edited by Williams S. T., Sharpe M. E., Holt J. G. Baltimore: Williams & Wilkins;
    [Google Scholar]
  6. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [CrossRef]
    [Google Scholar]
  7. Kämpfer P., Steiof M., Dott W. 1991; Microbiological characterization of a fuel-oil contaminated site including numerical identification of heterotrophic water and soil bacteria. Microb Ecol 21:227–251 [CrossRef]
    [Google Scholar]
  8. Krasilnikov N. A., Kalakoutskii L. V., Kirillova N. F. 1961; A new genus of Actinomycetales , Promicromonospora , gen. nov. Bull Acad Sci USSR Ser Biol 1:107–112
    [Google Scholar]
  9. Kumar S., Tamura K., Jakobsen I. B., Nei M. 2001; MEGA2: molecular evolutionary genetics analysis software. Bioinformatics 17:1244–1245 [CrossRef]
    [Google Scholar]
  10. Lechevalier H. A., Lechevalier M. P. 1981; Actinomycete genera “in search of a family”. In The Prokaryotes: a Handbook on Habitats, Isolation, and Identification of Bacteria pp 2118–2123Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  11. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  12. Moaledji K. 1986; Comparison of gram-staining and alternate methods, KOH test and aminopeptidase activity in aquatic bacteria: their application to numerical taxonomy. J Microbiol Methods 5:303–310 [CrossRef]
    [Google Scholar]
  13. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  14. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  15. Schumann P., Weiss N., Stackebrandt E. 2001; Reclassification of Cellulomonas cellulans (Stackebrandt and Keddie 1986) as Cellulosimicrobium cellulans gen. nov., comb. nov. Int J Syst Evol Microbiol 51:1007–1010 [CrossRef]
    [Google Scholar]
  16. Stackebrandt E., Breymann S., Steiner U., Prauser H., Weiss N., Schumann P. 2002; Re-evaluation of the status of the genus Oerskovia , reclassification of Promicromonospora enterophila (Jáger et al . 1983) as Oerskovia enterophila comb. nov. and description of Oerskovia jenensis sp. nov. and Oerskovia paurometabola sp. nov. Int J Syst Evol Microbiol 52:1105–1111 [CrossRef]
    [Google Scholar]
  17. Takahashi Y., Tanaka Y., Iwai Y., Ōmura S. 1987; Promicromonospora sukumoe sp. nov., a new species of the Actinomycetales . J Gen Appl Microbiol 33:507–519 [CrossRef]
    [Google Scholar]
  18. Takeuchi M., Sakane T., Nihira T., Yamada Y., Imai K. 1999; Corynebacterium terpenotabidum sp. nov., a bacterium capable of degrading squalene. Int J Syst Bacteriol 49:223–229 [CrossRef]
    [Google Scholar]
  19. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  21. Tindall B. J. 1990; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  22. Ventosa A., Marquez M. C., Kocur M., Tindall B. J. 1993; Comparative study of “ Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . Int J Syst Bacteriol 43:245–248 [CrossRef]
    [Google Scholar]
  23. Zlamala C., Schumann P., Kämpfer P., Rosselló-Mora R., Lubitz W., Busse H.-J. 2002a; Agrococcus baldri sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1211–1216 [CrossRef]
    [Google Scholar]
  24. Zlamala C., Schumann P., Kämpfer P., Rosselló-Mora R., Lubitz W., Busse H.-J. 2002b; Microbacterium aerolatum sp. nov., isolated from the air in the ‘Virgilkapelle’ in Vienna. Int J Syst Evol Microbiol 52:1229–1234 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02522-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02522-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

IMAGE

Supplementary material 2

IMAGE
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error