1887

Abstract

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain ik275mar, was isolated from a Mid-Atlantic Ridge deep-sea hydrothermal vent. Cells were rods surrounded by a sheath-like structure (toga), 0.4–0.9 µm in width and 1.2–6.0 µm in length. Strain ik275mar grew at 37–75 °C, pH 5.6–8.2 and at NaCl concentrations of 10–55 g l. Under optimum conditions (70 °C, pH 6.6, NaCl 20 g l), doubling time was 32 min. The isolate was able to ferment carbohydrates including starch, cellulose and cellulose derivatives. Acetate, H and CO were the main products of glucose fermentation. G+C content of DNA was 27 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain ik275mar is a member of the genus . 16S rRNA gene sequence identity with the other species of the genus ranged from 93.7 to 94.5 %. Based on the phylogenetic analysis and physiological properties of the novel isolate, we propose a novel species, sp. nov., with type strain ik275mar ( = DSM 23112  = VKM B-2574).

Funding
This study was supported by the:
  • Federal Agency of Education (Award П2283)
  • Programs of Russian Academy of Sciences ‘Molecular and Cell biology’
  • Origin and Evolution of Biosphere’
  • US National Science Foundation (Award NSF BIO-OCE 0728391)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025197-0
2011-05-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1160.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025197-0&mimeType=html&fmt=ahah

References

  1. Antoine E., Cilia V., Meunier J. R., Guezennec J., Lesongeur F., Barbier G. 1997; Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123 [View Article][PubMed]
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetovorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [View Article]
    [Google Scholar]
  3. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  5. Gerhardt P., Murray R. E. G., Wood W. A., Krieg N. R. (editors) 1994; Methods for General and Molecular Bacteriology . Washington, DC: American Society for Microbiology; [View Article]
    [Google Scholar]
  6. Huber R., Hannig M. 2006; Thermotogales . In The Prokaryotes, 3rd edn. vol. 7 pp. 899–922 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. Singapore: Springer; [View Article]
    [Google Scholar]
  7. Huber R., Stetter K. O. 1992; The Thermotogales: hyperthermophilic and extremely thermophilic bacteria. In Thermophilic bacteria pp. 185–194 Edited by Kristjansson J. K. Boca Raton, FL: CRC Press;
    [Google Scholar]
  8. Huber, R. & Stetter, K. O. (1999). Thermotogales. In Embryonic Encyclopedia of Life Sciences. London: Nature Publishing Group. http://www.els.net.
  9. Huber R., Woese C. R., Langworthy T. A., Fricke H., Stetter K. O. 1989; Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the ‘Thermotogales’. Syst Appl Microbiol 12:32–37 [CrossRef]
    [Google Scholar]
  10. Kevbrin V. V., Zavarzin G. A. 1992; The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum . Microbiology 61:563–567 (English translation of Mikrobiologiya)
    [Google Scholar]
  11. L'Haridon S. L., Miroshnichenko M. L., Hippe H., Fardeau M.-L., Bonch-Osmolovskaya E., Stackebrandt E., Jeanthon C. 2001; Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. Int J Syst Evol Microbiol 51:1327–1334[PubMed]
    [Google Scholar]
  12. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [View Article][PubMed]
    [Google Scholar]
  13. Miroshnichenko M. L., Kublanov I. V., Kostrikina N. A., Tourova T. P., Kolganova T. V., Birkeland N. K., Bonch-Osmolovskaya E. A. 2008; Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. Int J Syst Evol Microbiol 58:1492–1496 [View Article][PubMed]
    [Google Scholar]
  14. Park D. 2007; Genomic DNA isolation from different biological materials. In Methods in Molecular Biology, vol. 353: Protocols for Nucleic Acid Analysis by Nonradioactive Probes, 2nd edn. pp. 3–14 Edited by Hilario E., Mackay J. Totowa, NJ: Humana Press; [View Article]
    [Google Scholar]
  15. Ravot G., Ollivier B., Patel B. K. C., Magot M., Garcia J.-L. 1996; Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. Int J Syst Bacteriol 46:321–323 [View Article]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  17. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [View Article][PubMed]
    [Google Scholar]
  18. Sokolova T. G., Kostrikina N. A., Chernyh N. A., Tourova T. P., Kolganova T. V., Bonch-Osmolovskaya E. A. 2002; Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. Int J Syst Evol Microbiol 52:1961–1967 [View Article][PubMed]
    [Google Scholar]
  19. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17[PubMed] [CrossRef]
    [Google Scholar]
  20. Tamura K., Nei M., Kumar S. 2004; Prospects for inferring very large phylogenies by using the neighbor-joining method. Proc Natl Acad Sci U S A 101:11030–11035 [View Article][PubMed]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  22. Trüper H. G., Schlegel H. G. 1964; Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . Antonie van Leeuwenhoek 30:225–228 [CrossRef]
    [Google Scholar]
  23. Urios L., Cueff-Gauchard V., Pignet P., Postec A., Fardeau M.-L., Ollivier B., Barbier G. 2004; Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. Int J Syst Evol Microbiol 54:1953–1957 [View Article][PubMed]
    [Google Scholar]
  24. Woese C. R., Kandler O., Wheelis M. L. 1990; Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. Proc Natl Acad Sci U S A 87:4576–4579 [View Article][PubMed]
    [Google Scholar]
  25. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025197-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025197-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error