1887

Abstract

A novel obligately anaerobic, extremely thermophilic, organotrophic bacterium, strain ik275mar, was isolated from a Mid-Atlantic Ridge deep-sea hydrothermal vent. Cells were rods surrounded by a sheath-like structure (toga), 0.4–0.9 µm in width and 1.2–6.0 µm in length. Strain ik275mar grew at 37–75 °C, pH 5.6–8.2 and at NaCl concentrations of 10–55 g l. Under optimum conditions (70 °C, pH 6.6, NaCl 20 g l), doubling time was 32 min. The isolate was able to ferment carbohydrates including starch, cellulose and cellulose derivatives. Acetate, H and CO were the main products of glucose fermentation. G+C content of DNA was 27 mol%. Phylogenetic analysis of 16S rRNA gene sequences showed that strain ik275mar is a member of the genus . 16S rRNA gene sequence identity with the other species of the genus ranged from 93.7 to 94.5 %. Based on the phylogenetic analysis and physiological properties of the novel isolate, we propose a novel species, sp. nov., with type strain ik275mar ( = DSM 23112  = VKM B-2574).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025197-0
2011-05-01
2019-12-11
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1160.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025197-0&mimeType=html&fmt=ahah

References

  1. Antoine E. , Cilia V. , Meunier J. R. , Guezennec J. , Lesongeur F. , Barbier G. . ( 1997; ). Thermosipho melanesiensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales, isolated from deep-sea hydrothermal vents in the southwestern Pacific Ocean. . Int J Syst Bacteriol 47:, 1118–1123. [CrossRef] [PubMed]
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A. , Sokolova T. G. , Kostrikina N. A. , Zavarzin G. A. . ( 1990; ). Desulfurella acetovorans gen. nov., sp. nov. – a new thermophilic sulfur-reducing eubacterium. . Arch Microbiol 153:, 151–155. [CrossRef]
    [Google Scholar]
  3. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  4. Felsenstein J. . ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  5. Gerhardt P. , Murray R. E. G. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology . . Washington, DC:: American Society for Microbiology;. [CrossRef]
  6. Huber R. , Hannig M. . ( 2006; ). Thermotogales . . In The Prokaryotes, , 3rd edn., vol. 7, pp. 899–922. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . Singapore:: Springer;. [CrossRef]
    [Google Scholar]
  7. Huber R. , Stetter K. O. . ( 1992; ). The Thermotogales: hyperthermophilic and extremely thermophilic bacteria. . In Thermophilic bacteria, pp. 185–194. Edited by Kristjansson J. K. . . Boca Raton, FL:: CRC Press;.
    [Google Scholar]
  8. Huber, R. & Stetter, K. O. (1999). Thermotogales. In Embryonic Encyclopedia of Life Sciences. London: Nature Publishing Group. http://www.els.net.
  9. Huber R. , Woese C. R. , Langworthy T. A. , Fricke H. , Stetter K. O. . ( 1989; ). Thermosipho africanus gen. nov., represents a new genus of thermophilic eubacteria within the ‘Thermotogales’. . Syst Appl Microbiol 12:, 32–37.[CrossRef]
    [Google Scholar]
  10. Kevbrin V. V. , Zavarzin G. A. . ( 1992; ). The effect of sulfur compounds on growth of halophilic homoacetic bacterium Acetohalobium arabaticum . . Microbiology 61:, 563–567. (English translation of Mikrobiologiya).
    [Google Scholar]
  11. L'Haridon S. L. , Miroshnichenko M. L. , Hippe H. , Fardeau M.-L. , Bonch-Osmolovskaya E. , Stackebrandt E. , Jeanthon C. . ( 2001; ). Thermosipho geolei sp. nov., a thermophilic bacterium isolated from a continental petroleum reservoir in Western Siberia. . Int J Syst Evol Microbiol 51:, 1327–1334.[PubMed]
    [Google Scholar]
  12. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  13. Miroshnichenko M. L. , Kublanov I. V. , Kostrikina N. A. , Tourova T. P. , Kolganova T. V. , Birkeland N. K. , Bonch-Osmolovskaya E. A. . ( 2008; ). Caldicellulosiruptor kronotskyensis sp. nov. and Caldicellulosiruptor hydrothermalis sp. nov., two extremely thermophilic, cellulolytic, anaerobic bacteria from Kamchatka thermal springs. . Int J Syst Evol Microbiol 58:, 1492–1496. [CrossRef] [PubMed]
    [Google Scholar]
  14. Park D. . ( 2007;). Genomic DNA isolation from different biological materials. . In Methods in Molecular Biology, vol. 353: Protocols for Nucleic Acid Analysis by Nonradioactive Probes, , 2nd edn., pp. 3–14. Edited by Hilario E. , Mackay J. . . Totowa, NJ:: Humana Press;. [CrossRef]
    [Google Scholar]
  15. Ravot G. , Ollivier B. , Patel B. K. C. , Magot M. , Garcia J.-L. . ( 1996; ). Emended description of Thermosipho africanus as a carbohydrate-fermenting species using thiosulfate as an electron acceptor. . Int J Syst Bacteriol 46:, 321–323. [CrossRef]
    [Google Scholar]
  16. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  17. Sako Y. , Takai K. , Ishida Y. , Uchida A. , Katayama Y. . ( 1996; ). Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. . Int J Syst Bacteriol 46:, 1099–1104. [CrossRef] [PubMed]
    [Google Scholar]
  18. Sokolova T. G. , Kostrikina N. A. , Chernyh N. A. , Tourova T. P. , Kolganova T. V. , Bonch-Osmolovskaya E. A. . ( 2002; ). Carboxydocella thermautotrophica gen. nov., sp. nov., a novel anaerobic, CO-utilizing thermophile from a Kamchatkan hot spring. . Int J Syst Evol Microbiol 52:, 1961–1967. [CrossRef] [PubMed]
    [Google Scholar]
  19. Takai K. , Horikoshi K. . ( 2000; ). Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. . Extremophiles 4:, 9–17.[PubMed] [CrossRef]
    [Google Scholar]
  20. Tamura K. , Nei M. , Kumar S. . ( 2004; ). Prospects for inferring very large phylogenies by using the neighbor-joining method. . Proc Natl Acad Sci U S A 101:, 11030–11035. [CrossRef] [PubMed]
    [Google Scholar]
  21. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  22. Trüper H. G. , Schlegel H. G. . ( 1964; ). Sulphur metabolism in Thiorhodaceae. I. Quantitative measurements on growing cells of Chromatium okenii . . Antonie van Leeuwenhoek 30:, 225–228.[CrossRef]
    [Google Scholar]
  23. Urios L. , Cueff-Gauchard V. , Pignet P. , Postec A. , Fardeau M.-L. , Ollivier B. , Barbier G. . ( 2004; ). Thermosipho atlanticus sp. nov., a novel member of the Thermotogales isolated from a Mid-Atlantic Ridge hydrothermal vent. . Int J Syst Evol Microbiol 54:, 1953–1957. [CrossRef] [PubMed]
    [Google Scholar]
  24. Woese C. R. , Kandler O. , Wheelis M. L. . ( 1990; ). Towards a natural system of organisms: proposal for the domains Archaea, Bacteria, and Eucarya. . Proc Natl Acad Sci U S A 87:, 4576–4579. [CrossRef] [PubMed]
    [Google Scholar]
  25. Wolin E. A. , Wolin M. J. , Wolfe R. S. . ( 1963; ). Formation of methane by bacterial extracts. . J Biol Chem 238:, 2882–2886.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025197-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025197-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error