1887

Abstract

Thirteen bacterial isolates from root nodules of soybean grown in saline-alkaline soils in the Chinese province of Hebei were identified as a unique group in the genus based upon BOX-PCR patterns, sequencing analyses of 16S rRNA and housekeeping genes and DNA–DNA hybridization. Phenotypically, positive tests for acid production and negative results for reduction in litmus milk and sensitivity to 50 µg ampicillin ml, as well as some other features, could differentiate the novel group from defined species of the group. The novel group had symbiotic gene sequences ( and ) that were identical or very similar to those of () , and formed effective nodules with (soybean), and . Based upon the consensus of these analyses, a novel species, sp. nov., is proposed, with CCBAU 05684 ( = LMG 25493  = HAMBI 3098) as the type strain. The DNA G+C content of strain CCBAU 05684 was 60.9 mol% ( ).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025049-0
2011-08-01
2019-10-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1981.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025049-0&mimeType=html&fmt=ahah

References

  1. Chen W. , Yan G. , Li J. . ( 1988; ). Numerical taxonomic study of fast-growing soybean rhizobia and a proposal that Rhizobium fredii be assigned to Sinorhizobium gen. nov.. Int J Syst Bacteriol 38:, 392–397.[CrossRef]
    [Google Scholar]
  2. Chen W. , Wang E. , Wang S. , Li Y. , Chen X. , Li Y. . ( 1995; ). Characteristics of Rhizobium tianshanense sp. nov., a moderately and slowly growing root nodule bacterium isolated from an arid saline environment in Xinjiang, People’s Republic of China. . Int J Syst Bacteriol 45:, 153–159. [CrossRef] [PubMed]
    [Google Scholar]
  3. Chen W. , Wang E. , Chen W. . ( 2005; ). Biodiversity and phylogeny of rhizobial germplasm in China. . Curr Plant Sci Biotechnol Agric 41:, 367–371. [CrossRef]
    [Google Scholar]
  4. Cho J. C. , Tiedje J. M. . ( 2000; ). Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. . Appl Environ Microbiol 66:, 5448–5456. [CrossRef] [PubMed]
    [Google Scholar]
  5. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  6. Diouf A. , de Lajudie P. , Neyra M. , Kersters K. , Gillis M. , Martínez-Romero E. , Gueye M. . ( 2000; ). Polyphasic characterization of rhizobia that nodulate Phaseolus vulgaris in West Africa (Senegal and Gambia). . Int J Syst Evol Microbiol 50:, 159–170. [CrossRef] [PubMed]
    [Google Scholar]
  7. Gao J. , Sun J. , Li Y. , Wang E. , Chen W. . ( 1994; ). Numerical taxonomy and DNA relatedness of tropical rhizobia isolated from Hainan Province, China. . Int J Syst Bacteriol 44:, 151–158.[CrossRef]
    [Google Scholar]
  8. Graham P. , Sadowsky M. , Keyser H. , Barnet Y. , Bradley R. , Cooper J. , De Ley D. J. , Jarvis B. D. W. , Roslycky E. B. et al. ( 1991; ). Proposed minimal standard for the description of new genera and species of root-nodulating and stem-nodulating bacteria. . Int J Syst Bacteriol 41:, 582–587. [CrossRef]
    [Google Scholar]
  9. Gürtler V. , Stanisich V. A. . ( 1996; ). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. . Microbiology 142:, 3–16. [CrossRef] [PubMed]
    [Google Scholar]
  10. Han L. , Wang E. , Han T. , Liu J. , Sui X. , Chen W. , Chen W. . ( 2009; ). Unique community structure and biogeography of soybean rhizobia in the saline-alkaline soils of Xinjiang, China. . Plant Soil 324:, 291–305. [CrossRef]
    [Google Scholar]
  11. Haukka K. , Lindström K. , Young J. P. . ( 1998; ). Three phylogenetic groups of nodA and nifH genes in Sinorhizobium and Mesorhizobium isolates from leguminous trees growing in Africa and Latin America. . Appl Environ Microbiol 64:, 419–426.[PubMed]
    [Google Scholar]
  12. Healy M. , Huong J. , Bittner T. , Lising M. , Frye S. , Raza S. , Schrock R. , Manry J. , Renwick A. et al. ( 2005; ). Microbial DNA typing by automated repetitive-sequence-based PCR. . J Clin Microbiol 43:, 199–207. [CrossRef] [PubMed]
    [Google Scholar]
  13. Hungria M. , Chueire L. , Megias M. , Lamrabet Y. , Probanza A. , Guttierrez-Mañero F. J. , Campo R. J. . ( 2006; ). Genetic diversity of indigenous tropical fast-growing rhizobia isolated from soybean nodules. . Plant Soil 288:, 343–356. [CrossRef]
    [Google Scholar]
  14. Hurek T. , Wagner B. , Reinhold-Hurek B. . ( 1997; ). Identification of N2-fixing plant- and fungus-associated Azoarcus species by PCR-based genomic fingerprints. . Appl Environ Microbiol 63:, 4331–4339.[PubMed]
    [Google Scholar]
  15. Laguerre G. , Nour S. M. , Macheret V. , Sanjuan J. , Drouin P. , Amarger N. . ( 2001; ). Classification of rhizobia based on nodC and nifH gene analysis reveals a close phylogenetic relationship among Phaseolus vulgaris symbionts. . Microbiology 147:, 981–993.[PubMed]
    [Google Scholar]
  16. Lindström K. , Young J. P. W. . ( 2009; ). International Committee on Systematics of Prokaryotes Subcommittee on the taxonomy of Agrobacterium and Rhizobium. Minutes of the meetings, 31 August 2008, Gent, Belgium. . Int J Syst Evol Microbiol 59:, 921–922. [CrossRef] [PubMed]
    [Google Scholar]
  17. Man C. , Wang H. , Chen W. , Sui X. , Wang E. , Chen W. . ( 2008; ). Diverse rhizobia associated with soybean grown in the subtropical and tropical regions of China. . Plant Soil 310:, 77–87. [CrossRef]
    [Google Scholar]
  18. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from microorganisms. . J Mol Biol 3:, 208–216. [CrossRef]
    [Google Scholar]
  19. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  20. Martens M. , Dawyndt P. , Coopman R. , Gillis M. , De Vos P. , Willems A. . ( 2008; ). Advantages of multilocus sequence analysis for taxonomic studies: a case study using 10 housekeeping genes in the genus Ensifer (including former Sinorhizobium). . Int J Syst Evol Microbiol 58:, 200–214. [CrossRef] [PubMed]
    [Google Scholar]
  21. Nick G. , Lindström K. . ( 1994; ). Use of repetitive sequences and the polymerase chain reaction to fingerprint the genomic DNA of Rhizobium galegae strains and to identify the DNA obtained by sonicating the liquid cultures and root nodules. . Syst Appl Microbiol 17:, 265–273.[CrossRef]
    [Google Scholar]
  22. Peng G. X. , Tan Z. Y. , Wang E. T. , Reinhold-Hurek B. , Chen W. F. , Chen W. X. . ( 2002; ). Identification of isolates from soybean nodules in Xinjiang Region as Sinorhizobium xinjiangense and genetic differentiation of S. xinjiangense from Sinorhizobium fredii . . Int J Syst Evol Microbiol 52:, 457–462.
    [Google Scholar]
  23. Peng G. , Yuan Q. , Li H. , Zhang W. , Tan Z. . ( 2008; ). Rhizobium oryzae sp. nov., isolated from the wild rice Oryza alta . . Int J Syst Evol Microbiol 58:, 2158–2163. [CrossRef] [PubMed]
    [Google Scholar]
  24. Rasolomampianina R. , Bailly X. , Fetiarison R. , Rabevohitra R. , Béna G. , Ramaroson L. , Raherimandimby M. , Moulin L. , De Lajudie P. et al. ( 2005; ). Nitrogen-fixing nodules from rose wood legume trees (Dalbergia spp.) endemic to Madagascar host seven different genera belonging to α- and β-Proteobacteria . . Mol Ecol 14:, 4135–4146. [CrossRef] [PubMed]
    [Google Scholar]
  25. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  26. Scholla M. , Elkan G. . ( 1984; ). Rhizobium fredii sp. nov., a fast-growing species that effectively nodulates soybeans. . Int J Syst Bacteriol 34:, 484–486.[CrossRef]
    [Google Scholar]
  27. Sneath P. H. A. , Sokal R. B. . ( 1973; ). Numerical Taxonomy. The Principles and Practice of Numerical Classification. San Francisco:: W. H. Freeman;.
    [Google Scholar]
  28. Swofford, D. L. (1993). paup: phylogenetic analysis using parsimony, version 3.1.1. Champaign, IL: Illinois Natural History Survey.
  29. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
  30. Tan Z. Y. , Xu X. D. , Wang E. T. , Gao J. L. , Martínez-Romero E. , Chen W. X. . ( 1997; ). Phylogenetic and genetic relationships of Mesorhizobium tianshanense and related rhizobia. . Int J Syst Bacteriol 47:, 874–879. [CrossRef] [PubMed]
    [Google Scholar]
  31. Terefework Z. , Kaijalainen S. , Lindström K. . ( 2001; ). AFLP fingerprinting as a tool to study the genetic diversity of Rhizobium galegae isolated from Galega orientalis and Galega officinalis . . J Biotechnol 91:, 169–180. [CrossRef] [PubMed]
    [Google Scholar]
  32. Turner S. L. , Young J. P. W. . ( 2000; ). The glutamine synthetases of rhizobia: phylogenetics and evolutionary implications. . Mol Biol Evol 17:, 309–319.[PubMed] [CrossRef]
    [Google Scholar]
  33. Versalovic J. , Schneider M. , de Bruijn F. J. , Lupski J. R. . ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. . Methods Mol Cell Biol 5:, 25–40.
    [Google Scholar]
  34. Vincent J. . ( 1970; ). A Manual for the Practical Study of Root-nodule Bacteria. IBP Handbook no. 15. London:: International Biological Programme;.
    [Google Scholar]
  35. Vinuesa P. , Silva C. , Lorite M. J. , Izaguirre-Mayoral M. L. , Bedmar E. J. , Martínez-Romero E. . ( 2005a; ). Molecular systematics of rhizobia based on maximum likelihood and Bayesian phylogenies inferred from rrs, atpD, recA and nifH sequences, and their use in the classification of Sesbania microsymbionts from Venezuelan wetlands. . Syst Appl Microbiol 28:, 702–716. [CrossRef] [PubMed]
    [Google Scholar]
  36. Vinuesa P. , Silva C. , Werner D. , Martínez-Romero E. . ( 2005b; ). Population genetics and phylogenetic inference in bacterial molecular systematics: the roles of migration and recombination in Bradyrhizobium species cohesion and delineation. . Mol Phylogenet Evol 34:, 29–54. [CrossRef] [PubMed]
    [Google Scholar]
  37. Vinuesa P. , Rojas-Jiménez K. , Contreras-Moreira B. , Mahna S. K. , Prasad B. N. , Moe H. , Selvaraju S. B. , Thierfelder H. , Werner D. . ( 2008; ). Multilocus sequence analysis for assessment of the biogeography and evolutionary genetics of four Bradyrhizobium species that nodulate soybeans on the Asiatic continent. . Appl Environ Microbiol 74:, 6987–6996. [CrossRef] [PubMed]
    [Google Scholar]
  38. Wang F. Q. , Wang E. T. , Liu J. , Chen Q. , Sui X. H. , Chen W. F. , Chen W. X. . ( 2007; ). Mesorhizobium albiziae sp. nov., a novel bacterium that nodulates Albizia kalkora in a subtropical region of China. . Int J Syst Evol Microbiol 57:, 1192–1199. [CrossRef] [PubMed]
    [Google Scholar]
  39. Wang H. , Man C. , Wang E. , Chen W. . ( 2009; ). Diversity of rhizobia and interactions among the host legumes and rhizobial genotypes in an agricultural-forestry ecosystem. . Plant Soil 314:, 169–182. [CrossRef]
    [Google Scholar]
  40. Wayne L. , Brenner D. , Colwell R. , Grimont P. , Kandler O. , Krichevsky M. , Moore L. , Moore W. , Murray R. et al. ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  41. Young J. M. . ( 2003; ). The genus name Ensifer Casida 1982 takes priority over Sinorhizobium Chen et al. 1988, and Sinorhizobium morelense Wang et al. 2002 is a later synonym of Ensifer adhaerens Casida 1982. Is the combination ‘Sinorhizobium adhaerens’ (Casida 1982) Willems et al. 2003 legitimate? Request for an Opinion. . Int J Syst Evol Microbiol 53:, 2107–2110. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025049-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025049-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 1981 - 1988

Dendrogram based upon 16S rRNA-RFLP analysis showing that the test isolaets belong to the group.

Dendrogram based on IGS–RFLP fingerprints showing relationships among the test rhizobial isolates and reference strains for recognized species.

BOX-PCR fingerprinting used to check that the isolates used are not clonal.

SDS-PAGE of sp. nov. isolates.

Phylogenies of housekeeping genes , , and , showing relationships among sp. nov. isolates and strains of recognized species.

[PDF file of Supplementary Figures](927 KB)



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error