1887

Abstract

A Gram-negative-staining, obligately aerobic, non-motile, rod-shaped and chemoheterotrophic bacterium, designated strain MN1-1006, was isolated from an ascidian (sea squirt) sample, and was studied using a polyphasic taxonomic approach. Phylogenetic analyses based on 16S rRNA gene sequences indicated that the new isolate shared approximately 93–99% sequence similarity with recognized species of the genus within the phylum ‘’. DNA–DNA hybridization values between strain MN1-1006 and HOact23 and YM29-052 were 57% and 14.5%, respectively. Strain MN1-1006 produced carotenoid compounds that rendered the cell biomass a reddish pink colour. The strain also contained squalene. The cell-wall peptidoglycan of the novel strain contained muramic acid and -diaminopimelic acid. The DNA G+C content of strain MN1-1006 was 51.4 mol%. The major cellular fatty acids were iso-C, iso-C and anteiso-C. The major isoprenoid quinone was MK-9. On the basis of these data, it was concluded that strain MN1-1006 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is MN1-1006( = KCTC 23186 = NBRC 107102).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025031-0
2011-07-01
2019-10-15
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1515.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025031-0&mimeType=html&fmt=ahah

References

  1. Bartley G. E., Scolnik P. A.. ( 1995;). Plant carotenoids: pigments for photoprotection, visual attraction, and human health. . Plant Cell 7:, 1027–1038. [CrossRef].[PubMed].
    [Google Scholar]
  2. Ezaki T., Hashimoto Y., Yabuuchi E.. ( 1989;). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  3. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  4. Fraser P. D., Bramley P. M.. ( 2004;). The biosynthesis and nutritional uses of carotenoids. . Prog Lipid Res 43:, 228–265. [CrossRef].[PubMed].
    [Google Scholar]
  5. Harper J. J., Davis G. H. G.. ( 1979;). Two-dimensional thin-layer chromatography for amino acid analysis of bacterial cell walls. . Int J Syst Bacteriol 29:, 56–58. [CrossRef]
    [Google Scholar]
  6. Hedlund B. P., Gosink J. J., Staley J. T.. ( 1997;). Verrucomicrobia div. nov., a new division of the bacteria containing three new species of Prosthecobacter. . Antonie van Leeuwenhoek 72:, 29–38. [CrossRef].[PubMed].
    [Google Scholar]
  7. Kasai H., Katsuta A., Sekiguchi H., Matsuda S., Adachi K., Shindo K., Yoon J., Yokota A., Shizuri Y.. ( 2007;). Rubritalea squalenifaciens sp. nov., a squalene-producing marine bacterium belonging to subdivision 1 of the phylum ‘Verrucomicrobia’. . Int J Syst Evol Microbiol 57:, 1630–1634. [CrossRef].[PubMed].
    [Google Scholar]
  8. Katsuta A., Adachi K., Matsuda S., Shizuri Y., Kasai H.. ( 2005;). Ferrimonas marina sp. nov.. Int J Syst Evol Microbiol 55:, 1851–1855. [CrossRef].[PubMed].
    [Google Scholar]
  9. Kimura M.. ( 1983;). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;. [CrossRef].
    [Google Scholar]
  10. Kumar S., Tamura K., Nei M.. ( 2004;). mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef].[PubMed].
    [Google Scholar]
  11. Lyman J., Fleming R. H.. ( 1940;). Composition of sea water. . J Mar Res 3:, 134–146.
    [Google Scholar]
  12. Marmur J.. ( 1961;). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  13. Mesbah M., Premachandran U., Whitman W. B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  14. Mincer T. J., Jensen P. R., Kauffman C. A., Fenical W.. ( 2002;). Widespread and persistent populations of a major new marine actinomycete taxon in ocean sediments. . Appl Environ Microbiol 68:, 5005–5011. [CrossRef].[PubMed].
    [Google Scholar]
  15. Murray R. G. E., Doetsch R. N., Robinow C. F.. ( 1994;). Determinative and cytological light microscopy. . In Methods for General and Molecular Bacteriology, pp. 21–41. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  16. Saitou N., Nei M.. ( 1987;). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed].
    [Google Scholar]
  17. Sandmann G.. ( 2001;). Carotenoid biosynthesis and biotechnological application. . Arch Biochem Biophys 385:, 4–12. [CrossRef].[PubMed].
    [Google Scholar]
  18. Scheuermayer M., Gulder T. A. M., Bringmann G., Hentschel U.. ( 2006;). Rubritalea marina gen. nov., sp. nov., a marine representative of the phylum ‘Verrucomicrobia’, isolated from a sponge (Porifera). . Int J Syst Evol Microbiol 56:, 2119–2124. [CrossRef].[PubMed].
    [Google Scholar]
  19. Schleifer K. H., Kandler O.. ( 1972;). Peptidoglycan types of bacterial cell walls and their taxonomic implications. . Bacteriol Rev 36:, 407–477.[PubMed].
    [Google Scholar]
  20. Shindo K., Mikami K., Tamesada E., Takaichi S., Adachi K., Misawa N., Maoka T.. ( 2007;). Diapolycopenedioic acid xylosyl ester, a novel glyco-C30-carotenoic acid produced by a new marine bacterium Rubritalea squalenifaciens. . Tetrahedron Lett 48:, 2725–2727. [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G.. ( 1997;). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed].
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. ( 1987;). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. . Int J Syst Bacteriol 37:, 463–464. [CrossRef]
    [Google Scholar]
  23. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J.. ( 1991;). 16S ribosomal DNA amplification for phylogenetic study. . J Bacteriol 173:, 697–703.[PubMed].
    [Google Scholar]
  24. Yokota A., Tamura T., Nishii T., Hasegawa T.. ( 1993;). Kineococcus aurantiacus gen. nov., sp. nov., a new aerobic, gram-positive, motile coccus with diaminopimelic acid and arabinogalactan in the cell wall. . Int J Syst Bacteriol 43:, 52–57. [CrossRef]
    [Google Scholar]
  25. Yoon J., Matsuo Y., Matsuda S., Adachi K., Kasai H., Yokota A.. ( 2007;). Rubritalea spongiae sp. nov. and Rubritalea tangerina sp. nov., two carotenoid- and squalene-producing marine bacteria of the family Verrucomicrobiaceae within the phylum ‘Verrucomicrobia’, isolated from marine animals. . Int J Syst Evol Microbiol 57:, 2337–2343. [CrossRef].[PubMed].
    [Google Scholar]
  26. Yoon J., Matsuo Y., Matsuda S., Adachi K., Kasai H., Yokota A.. ( 2008;). Rubritalea sabuli sp. nov., a carotenoid- and squalene-producing member of the family Verrucomicrobiaceae, isolated from marine sediment. . Int J Syst Evol Microbiol 58:, 992–997. [CrossRef].[PubMed].
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025031-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025031-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error