1887

Abstract

Halophilic archaeal strain TBN37 was isolated from Taibei marine solar saltern near Lianyungang city of Jiangsu province, China. Cells were pleomorphic, flat and contained gas vesicles. Cells of strain TBN37 stained Gram-negative and the colonies were pink-pigmented. The strain was able to grow at 25–50 °C (optimum, 37–40 °C), with 1.4–5.1 M NaCl (optimum, 2.1 M NaCl), with 0–1.0 M MgCl (optimum, 0.01 M MgCl) and at pH 6.0–9.0 (optimum, pH 7.5). Cells lysed in distilled water and the minimal NaCl concentration to prevent cell lysis was 8 % (w/v). The major polar lipids of strain TBN37 were phosphatidylglycerol, phosphatidylglycerol phosphate methyl ester, phosphatidylglycerol sulfate and one major glycolipid chromatographically identical to sulfated mannosyl glucosyl diether (S-DGD-1). On the basis of 16S rRNA gene sequence analysis, strain TBN37 was closely related to and , with the same similarity of 97.4 %. The DNA G+C content of strain TBN37 is 64.1 mol%. DNA–DNA hybridization values between strain TBN37 and JCM 14081 and between strain TBN37 and RO5-8 were 37.6 % and 42.1 %, respectively. It was concluded that strain TBN37 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TBN37 ( = CGMCC 1.10124  = JCM 16430).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.025023-0
2011-04-01
2019-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/965.html?itemId=/content/journal/ijsem/10.1099/ijs.0.025023-0&mimeType=html&fmt=ahah

References

  1. Bardavid R. E. , Mana L. , Oren A. . ( 2007; ). Haloplanus natans gen. nov., sp. nov., an extremely halophilic, gas-vacuolate archaeon isolated from Dead Sea-Red Sea water mixtures in experimental outdoor ponds. . Int J Syst Evol Microbiol 57:, 780–783. [CrossRef] [PubMed]
    [Google Scholar]
  2. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y.-W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cui H.-L. , Lin Z.-Y. , Dong Y. , Zhou P.-J. , Liu S.-J. . ( 2007; ). Halorubrum litoreum sp. nov., an extremely halophilic archaeon from a solar saltern. . Int J Syst Evol Microbiol 57:, 2204–2206. [CrossRef] [PubMed]
    [Google Scholar]
  4. Cui H.-L. , Zhou P.-J. , Oren A. , Liu S.-J. . ( 2009; ). Intraspecific polymorphism of 16S rRNA genes in two halophilic archaeal genera, Haloarcula and Halomicrobium . . Extremophiles 13:, 31–37. [CrossRef] [PubMed]
    [Google Scholar]
  5. Cui H.-L. , Gao X. , Li X.-Y. , Xu X.-W. , Zhou Y.-G. , Liu H.-C. , Zhou P.-J. . ( 2010; ). Haloplanus vescus sp. nov., an extremely halophilic archaeon from a marine solar saltern, and emended description of the genus Haloplanus . . Int J Syst Evol Microbiol 60:, 1824–1827. [CrossRef] [PubMed]
    [Google Scholar]
  6. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  7. Dussault H. P. . ( 1955; ). An improved technique for staining red halophilic bacteria. . J Bacteriol 70:, 484–485.[PubMed]
    [Google Scholar]
  8. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  9. Gonzalez C. , Gutierrez C. , Ramirez C. . ( 1978; ). Halobacterium vallismortis sp. nov. An amylolytic and carbohydrate-metabolizing, extremely halophilic bacterium. . Can J Microbiol 24:, 710–715. [CrossRef] [PubMed]
    [Google Scholar]
  10. Gutiérrez C. , González C. . ( 1972; ). Method for simultaneous detection of proteinase and esterase activities in extremely halophilic bacteria. . Appl Microbiol 24:, 516–517.[PubMed]
    [Google Scholar]
  11. Gutiérrez M. C. , Castillo A. M. , Kamekura M. , Ventosa A. . ( 2008; ). Haloterrigena salina sp. nov., an extremely halophilic archaeon isolated from a salt lake. . Int J Syst Evol Microbiol 58:, 2880–2884. [CrossRef] [PubMed]
    [Google Scholar]
  12. Huß V. A. R. , Festl H. , Schleifer K. H. . ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192.[CrossRef]
    [Google Scholar]
  13. Kates M. . ( 1986; ). Techniques of lipidology, , 2nd rev. edn.. Amsterdam:: Elsevier;.
    [Google Scholar]
  14. McDade J. J. , Weaver R. H. . ( 1959; ). Rapid methods for the detection of gelatin hydrolysis. . J Bacteriol 77:, 60–64.[PubMed]
    [Google Scholar]
  15. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Evol Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  16. Ng W.-L. , Yang C.-F. , Halladay J. T. , Arora A. , DasSarma S. . ( 1995; ). Protocol 25. Isolation of genomic and plasmid DNAs from Halobacterium halobium . . In Archaea: a laboratory manual: Halophiles, pp. 179–180. Edited by DasSarma S. , Fleischmann E. M. . . Cold Spring Harbor, NY:: Cold Spring Harbor Laboratory Press;.
    [Google Scholar]
  17. Oren A. , Ventosa A. , Grant W. D. . ( 1997; ). Proposed minimal standards for description of new taxa in the order Halobacteriales . . Int J Syst Bacteriol 47:, 233–238. [CrossRef]
    [Google Scholar]
  18. Oren A. , Arahal D. R. , Ventosa A. . ( 2009; ). Emended descriptions of genera of the family Halobacteriaceae . . Int J Syst Evol Microbiol 59:, 637–642. [CrossRef] [PubMed]
    [Google Scholar]
  19. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  20. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  21. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.025023-0
Loading
/content/journal/ijsem/10.1099/ijs.0.025023-0
Loading

Data & Media loading...

Supplements

Phase-contrast micrographs of strain TBN37 (a and b). Bar, 2 µm. GV, gas vesicle; PHA, polyhydroxyalkanoate granule.

IMAGE

Analysis of the lipid composition of strain TBN37 using thin layer chromatography. (a) Two-dimensional TLC, showing the presence of a single glycolipid in strain TBN37 . (b) One-dimensional TLC. Lanes: 1, CGMCC 1.2367 (=ATCC 33170); 2, JCM 14791 ; 3, JCM 14081 ; 4, Strain TBN37 . PG, phosphatidylglycerol; PGP-Me, phosphatidylglycerol phosphate methyl ester; PGS, phosphatidylglycerol sulfate; DGD-1, mannosyl glucosyl diether; S-DGD-1, sulfated mannosyl glucosyl diether; F-first dimension of TLC; S-second dimension of TLC.

IMAGE

Phylogenetic tree derived from maximum-parsimony analysis based on 16S rRNA gene sequences showing the relationships between strain TBN37 , members of the genus , and other related genera of family . Only bootstrap values greater than 70 % are shown. Bar, 50 expected changes per 1000 nt positions.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error