1887

Abstract

Two strains, CA15-8 and CA15-9, were isolated from soil, under alkali conditions, and characterized phenotypically, chemotaxonomically and genetically. These alkalitolerant organisms grew over a wide pH range (pH 7·0–12·0), with an optimum at pH 7·0–8·0. The mean G+C content of the DNA of these strains was 63±2 mol%. The strains contained MK-8(H) and MK-9(H) as the main respiratory quinones. The cell-wall peptidoglycan was Lys-Thr-Ala and the whole-cell sugar was rhamnose. The major cellular fatty acids of the isolates were anteiso-C and iso-C. A phylogenetic analysis, based on 16S rDNA sequence data, revealed that strains CA15-8 and CA15-9 formed an evolutionary lineage distinct from other species. On the basis of morphological, physiological and chemotaxonomic characteristics, 16S rDNA sequence comparisons and DNA–DNA hybridization data, a novel species of is proposed, namely (type strain CA15-8=KCTC 9922=IFO 16787).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02492-0
2003-09-01
2020-09-30
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531277.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02492-0&mimeType=html&fmt=ahah

References

  1. Conn J., Dimmick I. 1947; Soil bacteria similar in morphology to Mycobacterium and Corynebacterium . J Bacteriol 54:291–303
    [Google Scholar]
  2. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  3. Felsenstein J. 1993 phylip (phylogeny inference package), version 3.5c Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  4. Funke G., von Graevenitz A., Clarridge J. E. III, Bernard K. A. 1997; Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159
    [Google Scholar]
  5. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  6. Koch C., Schumann P., Stackebrandt E. 1995; Reclassification of Micrococcus agilis (Ali-Cohen 1889) to the genus Arthrobacter as Arthrobacter agilis comb. nov. and emendation of the genus Arthrobacter . Int J Syst Bacteriol 45:837–839 [CrossRef]
    [Google Scholar]
  7. Kodama Y., Yamamoto H., Amano N., Amachi T. 1992; Reclassification of two strains of Arthrobacter oxydans and proposal of Arthrobacter nicotinovorans sp. nov. Int J Syst Bacteriol 42:234–239 [CrossRef]
    [Google Scholar]
  8. Komagata K., Suzuki K.-I. 1987; Lipid and cell-wall analysis in bacterial systematics. In Methods in Microbiology vol. 19 pp 161–207Edited by Colwell R. R., Grigorova R. New York: Academic Press;
    [Google Scholar]
  9. Lee J.-S., Jung M.-C., Kim W.-S.10 other authors 1996; Identification of lactic acid bacteria from kimchi by cellular FAMEs analysis. Kor J Appl Microbiol Biotechnol 24:234–241
    [Google Scholar]
  10. Marmur J. 1961; A procedure for the isolation of DNA from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  11. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  12. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477
    [Google Scholar]
  13. Shin Y. K., Lee J.-S., Chun C. O., Kim H.-J., Park Y.-H. 1996; Isoprenoid quinone profiles of the Leclercia adecarboxylata KCTC 1036T. J Microbiol Biotechnol 6:68–69
    [Google Scholar]
  14. Skerman V. B. D. 1967 A Guide to the Identification of the Genera of Bacteria , 2nd edn. Baltimore: Williams & Wilkins;
    [Google Scholar]
  15. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  16. Stackebrandt E., Liesack W. 1993; Nucleic acids and classification. In Handbook of New Bacterial Systematics pp 152–189Edited by Goodfellow M., O'Donnell A. G. London: Academic Press;
    [Google Scholar]
  17. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  18. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  19. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  20. Yang P., Vauterin L., Vancanneyt M., Swings J., Kersters K. 1993; Application of fatty acid methyl esters for the taxonomic analysis of the genus Xanthomonas . Syst Appl Microbiol 16:47–71
    [Google Scholar]
  21. Yumoto I., Yamazaki K., Sawabe T., Nakano K., Kawasaki K., Ezura Y., Shinano H. 1998; Bacillus horti sp. nov., a new gram-negative alkaliphilic bacillus. Int J Syst Bacteriol 48:565–571 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02492-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02492-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error