1887

Abstract

During the taxonomic investigation of cold-adapted bacteria from samples collected in the Antarctic area of the South Shetland Islands, one Gram-reaction-negative, psychrotolerant, aerobic bacterium, designated strain M1, was isolated from marine sediment collected on Deception Island. The organism was rod-shaped, catalase- and oxidase-positive and motile by means of a polar flagellum. This psychrotolerant strain grew at temperatures ranging from −4 °C to 34 °C. Phylogenetic studies based on 16S rRNA gene sequences confirmed that Antarctic isolate M1 was a member of the genus and was located in the cluster. 16S rRNA gene sequence similarity values were >98 % between 13 type strains belonging to the lineage. However, phylogenetic analysis of gene sequences showed that strain M1 exhibited high sequence similarity only with respect to (97.42 %) and (96.40 %) and DNA–DNA hybridization experiments between the Antarctic isolate M1 and the type strains of these two closely related species revealed relatedness values of 58 and 57 %, respectively. Several phenotypic characteristics, together with the results of polar lipid and cellular fatty acid analyses, were used to differentiate strain M1 from related pseudomonads. Based on the evidence of this polyphasic taxonomic study, strain M1 represents a novel species, for which the name sp. nov. is proposed. The type strain is M1 ( = LMG 25555  = CECT 7677).

Funding
This study was supported by the:
  • Government of Spain (Award CTQ 2007-60749/PPQ)
  • Autonomous Government of Catalonia (Award 2009SGR1212)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024919-0
2011-10-01
2021-10-20
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2401.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024919-0&mimeType=html&fmt=ahah

References

  1. Antranikian G., Vorgias C. E., Bertoldo C. 2005; Extreme environments as a resource for microorganisms and novel biocatalysts. Adv Biochem Eng Biotechnol 96:219–262[PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  3. Bozal N., Montes M. J., Tudela E., Jiménez F., Guinea J. 2002; Shewanella frigidimarina and Shewanella livingstonensis sp. nov. isolated from Antarctic coastal areas. Int J Syst Evol Microbiol 52:195–205[PubMed]
    [Google Scholar]
  4. Bozal N., Montes M. J., Mercadé E. 2007; Pseudomonas guineae sp. nov., a novel psychrotolerant bacterium from an Antarctic environment. Int J Syst Evol Microbiol 57:2609–2612 [View Article][PubMed]
    [Google Scholar]
  5. Bozal N., Montes M. J., Miñana-Galbis D., Manresa A., Mercadé E. 2009; Shewanella vesiculosa sp. nov., a psychrotolerant bacterium isolated from an Antarctic coastal area. Int J Syst Evol Microbiol 59:336–340 [View Article][PubMed]
    [Google Scholar]
  6. Bruni V., Gugliandolo C., Maugeri T., Allegra A. 1999; Psychrotrophic bacteria from a coastal station in the Ross sea (Terra Nova Bay, Antarctica). New Microbiol 22:357–363[PubMed]
    [Google Scholar]
  7. Cleenwerck I., Vandemeulebroecke K., Janssens D., Swings J. 2002; Re-examination of the genus Acetobacter, with descriptions of Acetobacter cerevisiae sp. nov. and Acetobacter malorum sp. nov.. Int J Syst Evol Microbiol 52:1551–1558 [View Article][PubMed]
    [Google Scholar]
  8. De Vos P., Van Landschoot A., Segers P., Tytgat R., Gillis M., Bauwens M., Rossau R., Goor M., Pot B. et al. 1989; Genotypic relationships and taxonomic localization of unclassified Pseudomonas and Pseudomonas-like strains by deoxyribonucleic acid : ribosomal ribonucleic acid hybridizations. Int J Syst Bacteriol 39:35–49 [View Article]
    [Google Scholar]
  9. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid–deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  10. Goris J., Suzuki K., De Vos P., Nakase T., Kersters K. 1998; Evaluation of a microplate DNA–DNA hybridization method compared with the initial renaturation method. Can J Microbiol 44:1148–1153 [View Article]
    [Google Scholar]
  11. King E. O., Ward M. K., Raney D. E. 1954; Two simple media for the demonstration of pyocyanin and fluorescin. J Lab Clin Med 44:301–307[PubMed]
    [Google Scholar]
  12. Kriss A. E., Mitskevich I. N., Rozanova E. P., Osnitskaia L. K. 1976; [Microbiological studies of the Wanda Lake (Antarctica)]. Mikrobiologiia 45:1075–1081 (in Russian) [PubMed]
    [Google Scholar]
  13. Ma Y., Wang L., Shao Z. 2006; Pseudomonas, the dominant polycyclic aromatic hydrocarbon-degrading bacteria isolated from Antarctic soils and the role of large plasmids in horizontal gene transfer. Environ Microbiol 8:455–465 [View Article][PubMed]
    [Google Scholar]
  14. Maugeri T. L., Gugliandolo C., Bruni V. 1996; Heterotrophic bacteria in the Ross Sea (Terra Nova Bay, Antarctica). New Microbiol 19:67–76[PubMed]
    [Google Scholar]
  15. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  16. Molin G., Ternström A., Ursing J. 1986; Pseudomonas lundensis, a new bacterial species isolated from meat. Int J Syst Bacteriol 36:339–342 [View Article]
    [Google Scholar]
  17. Montes M. J., Bozal N., Mercadé E. 2008; Marinobacter guineae sp. nov., a novel moderately halophilic bacterium from an Antarctic environment. Int J Syst Evol Microbiol 58:1346–1349 [View Article][PubMed]
    [Google Scholar]
  18. Mulet M., Lalucat J., García-Valdés E. 2010; DNA sequence-based analysis of the Pseudomonas species. Environ Microbiol 12:1513–1530 [View Article][PubMed]
    [Google Scholar]
  19. Nevot M., Deroncele V., López-Iglesias C., Bozal N., Guinea J., Mercade E. 2006; Ultrastructural analysis of the extracellular matter secreted by the psychrotolerant bacterium Pseudoalteromonas antarctica NF3. Microb Ecol 51:501–507 [View Article][PubMed]
    [Google Scholar]
  20. Niemann S., Pühler A., Tichy H. V., Simon R., Selbitschka W. 1997; Evaluation of the resolving power of three different DNA fingerprinting methods to discriminate among isolates of a natural Rhizobium meliloti population. J Appl Microbiol 82:477–484 [View Article][PubMed]
    [Google Scholar]
  21. Reddy G. S. N., Matsumoto G. I., Schumann P., Stackerbrandt E., Shivaji S. 2004; Psychrophilic pseudomonads from Antarctica: Pseudomonas antarctica sp. nov. and Pseudomonas proteolytica sp. nov.. Int J Syst Evol Microbiol 54:713–719 [View Article][PubMed]
    [Google Scholar]
  22. Shivaji S., Rao N. S., Saisree L., Sheth V., Reddy G. S. N., Bhargava P. M. 1989; Isolation and identification of Pseudomonas spp. from Schirmacher Oasis, Antarctica. Appl Environ Microbiol 55:767–770[PubMed]
    [Google Scholar]
  23. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  24. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  25. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  26. Wayne L. G., Brennen D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  27. Wilson K. 1987; Preparation of genomic DNA from bacteria. In Current Protocols in Molecular Biology pp. 2.4.1–2.4.5 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Greene Publishing and Wiley-Interscience;
    [Google Scholar]
  28. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [View Article][PubMed]
    [Google Scholar]
  29. Yarza P., Richter M., Peplies J., Euzeby J., Amann R., Schleifer K. H., Ludwig W., Glöckner F. O., Rosselló-Móra R. 2008; The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. Syst Appl Microbiol 31:241–250 [View Article][PubMed]
    [Google Scholar]
  30. Yumoto I., Kusano T., Shingyo T., Nodasaka Y., Matsuyama H., Okuyama H. 2001; Assignment of Pseudomonas sp. strain E-3 to Pseudomonas psychrophila sp. nov., a new facultatively psychrophilic bacterium. Extremophiles 5:343–349 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024919-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024919-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error