1887

Abstract

Three Gram-negative, rod-shaped, aerobic bacteria that were capable of degrading dimethylsulfoniopropionate (DMSP) were isolated from marine waters. These isolates (DSS-3, DSS-10 and ISM) exhibited the ability to demethylate and cleave DMSP, as well as to degrade other sulfur compounds related to DMSP that are cycled in marine environments. Intracellular poly--hydroxybutyrate inclusions, surface blebs and one polar, complex flagellum that rotated exclusively in the clockwise direction were observed for DSS-3. The outer membrane of ISM was separated from the cytoplasm at the poles in a toga-like morphology. The primary fatty acid in both strains was C 7. DNA G+C contents for the isolates were 68·0±0·1, 68·1±0·1 and 66·0±0·2 mol% for DSS-3, DSS-10 and ISM, respectively. 16S rRNA gene sequence analyses placed these organisms within the lineage of the -. Closely related species were and (DSS-3 and DSS-10) and (ISM). Neither DSS-3 nor ISM exhibited 16S rRNA similarity >97 % or DNA–DNA hybridization values >45 % to their nearest described relatives. Genotypic and phenotypic analyses support the creation of two novel species: sp. nov. with strain DSS-3 (=ATCC 700808=DSM 15171) as the type strain, and sp. nov. with strain ISM (=ATCC BAA-591=DSM 15170) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02491-0
2003-09-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/5/ijs531261.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02491-0&mimeType=html&fmt=ahah

References

  1. Baumann P., Baumann L. 1981; The marine Gram-negative eubacteria: genera Photobacterium Beneckea , Alteromonas , Pseudomonas , and Alcaligenes . In The Prokaryotes pp 1302–1331Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  2. Buchan A., Collier L. S., Neidle E. L., Moran M. A. 2000; Key aromatic-ring-cleaving enzyme, protocatechuate 3,4-dioxygenase, in the ecologically important marine Roseobacter lineage. Appl Environ Microbiol 66:4662–4672 [CrossRef]
    [Google Scholar]
  3. Buchan A., Neidle E. L., Moran M. A. 2001; Diversity of the ring-cleaving dioxygenase gene pcaH in a salt marsh bacterial community. Appl Environ Microbiol 67:5801–5809 [CrossRef]
    [Google Scholar]
  4. Charlson R. J., Lovelock J. E., Andreae M. O., Warren S. G. 1987; Oceanic phytoplankton, atmospheric sulfur, cloud albedo and climate. Nature 326:655–661 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1989; phylip – Phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  8. Fuhrman J. A., Lee S. H., Masuchi Y., Davis A. A., Wilcox R. M. 1994; Characterization of marine prokaryotic communities via DNA and RNA. Microb Ecol 28:133–145 [CrossRef]
    [Google Scholar]
  9. Giovannoni S. J. 1991; The polymerase chain reaction. In Nucleic Acid Techniques in Bacterial Systematics pp 177–201Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  10. González J. M., Moran M. A. 1997; Numerical dominance of a group of marine bacteria in the α -subclass of the class Proteobacteria in coastal seawater. Appl Environ Microbiol 63:4237–4242
    [Google Scholar]
  11. González J. M., Whitman W. B., Hodson R. E., Moran M. A. 1996; Identifying numerically abundant culturable bacteria from complex communities: an example from a lignin enrichment culture. Appl Environ Microbiol 62:4433–4440
    [Google Scholar]
  12. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997a; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov. sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [CrossRef]
    [Google Scholar]
  13. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997b; Sagittula stellata gen. nov. sp. nov., a lignin-transforming bacterium from a coastal environment. Int J Syst Bacteriol 47:773–780 [CrossRef]
    [Google Scholar]
  14. González J. M., Kiene R. P., Moran M. A. 1999; Transformation of sulfur compounds by an abundant lineage of marine bacteria in the α -subclass of the class Proteobacteria . Appl Environ Microbiol 65:3810–3819
    [Google Scholar]
  15. González J. M., Simó R., Massana R., Covert J. S., Casamayor E. O., Pedrós-Alió C., Moran M. A. 2000; Bacterial community structure associated with a dimethylsulfoniopropionate-producing North Atlantic algal bloom. Appl Environ Microbiol 66:4237–4246 [CrossRef]
    [Google Scholar]
  16. Holt J. G., Krieg N. R. 1994; Enrichment and isolation. In Methods for General and Molecular Microbiology pp 179–223Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  17. Huber R., Stetter K. O. 2001; Genus I. Thermotoga . In Bergey's Manual of Systematic Bacteriology . , 2nd edn. vol 1 pp 370–375Edited by Garrity G. M., Boone D. R., Castenholtz R. W. New York: Springer;
  18. Keswani J., Whitman W. B. 2001; Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678
    [Google Scholar]
  19. Kiene R. P. 1996; Production of methanethiol from dimethylsulfoniopropionate in marine surface waters. Mar Chem 54:69–83 [CrossRef]
    [Google Scholar]
  20. Kiene R. P., Linn L. J., González J., Moran M. A., Bruton J. A. 1999; Dimethylsulfoniopropionate and methanethiol are important precursors of methionine and protein-sulfur in marine bacterioplankton. Appl Environ Microbiol 65:4549–4558
    [Google Scholar]
  21. Kiene R. P., Linn L. J., Bruton J. A. 2000; New and important roles for DMSP in marine microbial communities. J Sea Res 43:209–224 [CrossRef]
    [Google Scholar]
  22. Kovacs N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703
    [Google Scholar]
  23. Labrenz M., Collins M. D., Lawson P. A., Tindall B. J., Schumann P., Hirsch P. 1999; Roseovarius tolerans gen. nov., sp. nov. a budding bacterium with variable bacteriochlorophyll a production from hypersaline Ekho Lake. Int J Syst Bacteriol 49:137–147 [CrossRef]
    [Google Scholar]
  24. Lane D. J., Pace B., Olsen G. J., Stahl D. A., Sogin M. L., Pace N. R. 1985; Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82:6955–6959 [CrossRef]
    [Google Scholar]
  25. Ledyard K. M., Dacey J. W. H. 1996; Microbial cycling of DMSP and DMS in coastal and oligotrophic sea water. Limnol Oceanogr 41:33–40 [CrossRef]
    [Google Scholar]
  26. Ledyard K. M., DeLong E. F., Dacey J. W. H. 1993; Characterization of a DMSP-degrading bacterial isolate from the Sargasso Sea. Arch Microbiol 160:312–318 [CrossRef]
    [Google Scholar]
  27. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  28. Normand P., Ponsonnet C., Nesme X., Neyra M., Simonet P. 1996; ITS analysis of prokaryotes. In Molecular Microbial Ecology Manual 3.4.5 pp 1–12Edited by Akkermans A. D. L., van Elsas J. D., de Bruijn F. J. Dordrecht: Kluwer;
    [Google Scholar]
  29. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48
    [Google Scholar]
  30. Petursdottir S. K., Kristjansson J. K. 1997; Silicibacter lacuscaerulensis gen. nov., sp. nov. a mesophilic moderately halophilic bacterium characteristic of the Blue Lagoon geothermal lake in Iceland. Extremophiles 1:94–99 [CrossRef]
    [Google Scholar]
  31. Scharf B., Schuster-Wolff-Bühring H., Rachel R., Schmitt R. 2001; Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: importance of Flagellin A for flagellar filament structure and transcriptional regulation. J Bacteriol 183:5334–5342 [CrossRef]
    [Google Scholar]
  32. Simó R. 2001; Production of atmospheric sulfur by oceanic plankton: biogeochemical, ecological and evolutionary links. Trends Ecol Evol 16:287–294 [CrossRef]
    [Google Scholar]
  33. Simó R., Pedrós-Alió C. 1999; Role of vertical mixing in controlling the oceanic production of dimethyl sulphide. Nature 402:396–399 [CrossRef]
    [Google Scholar]
  34. Sourjik V., Schmitt R. 1996; Different roles of CheY1 and CheY2 in the chemotaxis of Rhizobium meliloti . Mol Microbiol 22:427–436 [CrossRef]
    [Google Scholar]
  35. Stahl D. A., Amann R. I. 1991; Development and application of nucleic acid probes in bacterial systematics. In Nucleic Acid Techniques in Bacterial Systematics pp 205–248Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  36. Stefels J., Dijkhuizen L., Gieskes W. W. C. 1995; DMSP-lyase activity in a spring phytoplankton bloom off the Dutch coast, related to Phaeocystis sp. abundance. Mar Ecol Prog Ser 123:235–243 [CrossRef]
    [Google Scholar]
  37. Takeuchi M., Sawada H., Oyaizu H., Yokota A. 1994; Phylogenetic evidence for Sphingomonas and Rhizomonas as nonphotosynthetic members of the alpha-4 subclass of the Proteobacteria . Int J Syst Bacteriol 44:308–314 [CrossRef]
    [Google Scholar]
  38. Tsai Y.-L., Olson B. H. 1991; Rapid method for direct extraction of DNA from soil and sediments. Appl Environ Microbiol 57:1070–1074
    [Google Scholar]
  39. Uchino Y., Hirata A., Yokota A., Sugiyama J. 1998; Reclassification of marine Agrobacterium species: proposals of Stappia stellulata gen. nov., comb. nov., Stappia aggregata sp. nov., nom. rev., Ruegeria atlantica gen. nov., comb. nov., Ruegeria gelatinovora comb. nov. Ruegeria algicola comb. nov., and Ahrensia kieliense gen. nov., sp. nov., nom. rev. J Gen Appl Microbiol 44201–210 [CrossRef]
    [Google Scholar]
  40. van Duyl F. C., Gieskes W. W. C., Kop A. J., Lewis W. E. 1998; Biological control of short-term variations in the concentration of DMSP and DMS during a Phaeocystis spring bloom. J Sea Res 40:221–231 [CrossRef]
    [Google Scholar]
  41. Visscher P. T., Diaz M. R., Taylor B. F. 1992; Enumeration of bacteria which cleave or demethylate dimethylsulfoniopropionate in the Caribbean Sea. Mar Ecol Prog Ser 89:293–296 [CrossRef]
    [Google Scholar]
  42. Wolfe G. V., Steinke M. 1996; Grazing-activated production of dimethyl sulfide (DMS) by two clones of Emiliania huxleyi . Limnol Oceanogr 41:1151–1160 [CrossRef]
    [Google Scholar]
  43. Zubkov M. V., Fuchs B. M., Archer S. D., Kiene R. P., Amann R., Burkill P. H. 2001; Linking the composition of bacterioplankton to rapid turnover of dissolved dimethylsulphoniopropionate in an algal bloom in the North Sea. Environ Microbiol 3:304–311 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02491-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02491-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error