1887

Abstract

A mesophilic, facultatively anaerobic, autotrophic bacterium, designated strain Su4, was isolated from marine sediment. The isolate was able to utilize reduced sulfur compounds including thiosulfate, tetrathionate, sulfur and sulfide but not sulfite as the energy source. Growth occurred under aerobic and denitrifying chemolithoautotrophic conditions in the presence of thiosulfate as an electron donor and bicarbonate as a carbon source. The G+C content of the genomic DNA was 64.5 mol%. Comparative 16S rRNA gene sequence studies showed that strain Su4 was clearly affiliated with the class . The isolate was Gram-negative-staining and rod-shaped, lacked flagella and grew in artificial seawater medium at 10–40 °C (optimum 28–32 °C) and in 1–5 % (w/v) NaCl (optimum 3 % NaCl). Strain Su4 possessed C Cω7/iso-C 2-OH and Cω7/ω9/ω12 as the major fatty acids. On the basis of phenotypic and phylogenetic analysis, the isolate represents a novel species of a novel genus, for which the name is proposed. The type strain is Su4 ( = KCTC 5699  = JCM 15568).

Funding
This study was supported by the:
  • National Research Foundation of Korea (NRF) (Award 2009-0087901)
  • Korea government (MEST)
  • Marine and Extreme Genome Research Center Program of the Ministry of Land, Transportation and Maritime Affairs, Republic of Korea
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024844-0
2011-09-01
2024-12-06
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2045.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024844-0&mimeType=html&fmt=ahah

References

  1. Bryantseva I., Gorlenko V. M., Kompantseva E. I., Imhoff J. F., Süling J., Mityushina L. 1999; Thiorhodospira sibirica gen. nov., sp. nov., a new alkaliphilic purple sulfur bacterium from a Siberian soda lake. Int J Syst Bacteriol 49:697–703 [View Article][PubMed]
    [Google Scholar]
  2. Choi B.-R., Pham V. H., Park S.-J., Kim S.-J., Roh D.-H., Rhee S.-K. 2009; Characterization of facultative sulfur-oxidizing Marinobacter sp. BR13 isolated from marine sediment of Yellow Sea, Korea. J Korean Soc Appl Biol Chem 52:309–314 [View Article]
    [Google Scholar]
  3. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  4. Cline J. D. 1969; Spectrophotometric determination of hydrogen sulfide in natural waters. Limnol Oceanogr 14:454–458 [View Article]
    [Google Scholar]
  5. Dahl C., Friedrich C. G. 2007 Microbial Sulfur Metabolism Berlin, Heidelberg: Springer;
    [Google Scholar]
  6. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  7. Felsenstein J. 1993; phylip (phylogeny inference package), version 3.5. Distributed by the author.. Department of Genome Sciences, University of Washington; Seattle, USA.:
  8. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J. 2001; Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67:2873–2882 [View Article][PubMed]
    [Google Scholar]
  9. Friedrich C. G., Bardischewsky F., Rother D., Quentmeier A., Fischer J. 2005; Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259 [View Article][PubMed]
    [Google Scholar]
  10. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  11. Hoeft S. E., Blum J. S., Stolz J. F., Tabita F. R., Witte B., King G. M., Santini J. M., Oremland R. S. 2007; Alkalilimnicola ehrlichii sp. nov., a novel, arsenite-oxidizing haloalkaliphilic gammaproteobacterium capable of chemoautotrophic or heterotrophic growth with nitrate or oxygen as the electron acceptor. Int J Syst Evol Microbiol 57:504–512 [View Article][PubMed]
    [Google Scholar]
  12. Imhoff J. F. 2005; The Proteobacteria. In Bergey's Manual of Systematic Bacteriology pp. 43–48 Edited by Brenner D. J., Krieg N. R., Staley J. T., Garrity G. M. New York: Springer;
    [Google Scholar]
  13. Ito T., Sugita K., Okabe S. 2004; Isolation, characterization, and in situ detection of a novel chemolithoautotrophic sulfur-oxidizing bacterium in wastewater biofilms growing under microaerophilic conditions. Appl Environ Microbiol 70:3122–3129 [View Article][PubMed]
    [Google Scholar]
  14. Kelly D. P., McDonald I. R., Wood A. P. 2000; Proposal for the reclassification of Thiobacillus novellus as Starkeya novella gen. nov., comb. nov., in the alpha-subclass of the Proteobacteria . Int J Syst Evol Microbiol 50:1797–1802[PubMed]
    [Google Scholar]
  15. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [CrossRef]
    [Google Scholar]
  16. King G. M. 2007; Chemolithotrophic bacteria: distributions, functions and significance in volcanic environments. Microbes Environ 22:309–319 [View Article]
    [Google Scholar]
  17. Kletzin A., Urich T., Müller F., Bandeiras T. M., Gomes C. M. 2004; Dissimilatory oxidation and reduction of elemental sulfur in thermophilic archaea. J Bioenerg Biomembr 36:77–91 [View Article][PubMed]
    [Google Scholar]
  18. Kolmert A., Wikström P., Hallberg K. B. 2000; A fast and simple turbidimetric method for the determination of sulfate in sulfate-reducing bacterial cultures. J Microbiol Methods 41:179–184 [View Article][PubMed]
    [Google Scholar]
  19. Kuenen J. G., Robertson L. A. 1992; The use of natural bacterial populations for the treatment of sulphur-containing wastewater. Biodegradation 3:239–254 [View Article]
    [Google Scholar]
  20. McHatton S. C., Barry J. P., Jannasch H. W., Nelson D. C. 1996; High nitrate concentrations in vacuolate, autotrophic marine Beggiatoa spp.. Appl Environ Microbiol 62:954–958[PubMed]
    [Google Scholar]
  21. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  22. MIDI 1999 Sherlock Microbial Identification System, Operating Manual version 3.0 Newark, DE: MIDI;
    [Google Scholar]
  23. Nakagawa S., Takai K. 2008; Deep-sea vent chemoautotrophs: diversity, biochemistry and ecological significance. FEMS Microbiol Ecol 65:1–14 [View Article][PubMed]
    [Google Scholar]
  24. Otte S., Kuenen J. G., Nielsen L. P., Paerl H. W., Zopfi J., Schulz H. N., Teske A., Strotmann B., Gallardo V. A., Jorgensen B. B. 1999; Nitrogen, carbon, and sulfur metabolism in natural Thioploca samples. Appl Environ Microbiol 65:3148–3157[PubMed]
    [Google Scholar]
  25. Park S. J., Kang C. H., Rhee S. K. 2006; Characterization of the microbial diversity in a Korean solar saltern by 16S rRNA gene analysis. J Microbiol Biotechnol 16:1640–1645
    [Google Scholar]
  26. Rijkenberg M. J., Kort R., Hellingwerf K. J. 2001; Alkalispirillum mobile gen. nov., spec. nov., an alkaliphilic non-phototrophic member of the Ectothiorhodospiraceae . Arch Microbiol 175:369–375 [View Article][PubMed]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Sorokin D. Y. 2003; Oxidation of inorganic sulfur compounds by obligately organotrophic bacteria. Microbiology 72:641–653 [View Article]
    [Google Scholar]
  29. Sorokin D. Y., Mityushina L. L. 1998; [Ultrastructure of alkaliphilic heterotrophic bacteria oxidizing sulfur compounds to tetrathionate]. Microbiology (English translation of Mikrobiologiya) 67:78–85 (published in Russian with English translation)
    [Google Scholar]
  30. Sorokin D. Y., Lysenko A. M., Mityushina L. L. 1996; [Isolation and characterization of alkaliphilic chemoorganoheterotrophic bacteria oxidizing reduced inorganic sulfur compounds to tetrathionate.]. Microbiology (English translation of Mikrobiologiya) 65:326–338 (published in Russian with English translation)
    [Google Scholar]
  31. Sorokin D. Y., Robertson L. A., Kuenen J. G. 2000; Isolation and characterization of alkaliphilic, chemolithoautotrophic, sulphur-oxidizing bacteria. Antonie van Leeuwenhoek 77:251–262 [View Article][PubMed]
    [Google Scholar]
  32. Sorokin D. Y., Kuenen J. G., Jetten M. S. M. 2001a; Denitrification at extremely high pH values by the alkaliphilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium Thioalkalivibrio denitrificans strain ALJD. Arch Microbiol 175:94–101 [View Article][PubMed]
    [Google Scholar]
  33. Sorokin D. Y., Lysenko A. M., Mityushina L. L., Tourova T. P., Jones B. E., Rainey F. A., Robertson L. A., Kuenen G. J. 2001b; Thioalkalimicrobium aerophilum gen. nov., sp. nov. and Thioalkalimicrobium sibericum sp. nov., and Thioalkalivibrio versutus gen. nov., sp. nov., Thioalkalivibrio nitratis sp.nov., and Thioalkalivibrio denitrificancs sp. nov., novel obligately alkaliphilic and obligately chemolithoautotrophic sulfur-oxidizing bacteria from soda lakes. Int J Syst Evol Microbiol 51:565–580[PubMed]
    [Google Scholar]
  34. Sorokin D. Y., Tourova T. P., Lysenko A. M., Mityushina L. L., Kuenen J. G. 2002a; Thioalkalivibrio thiocyanoxidans sp. nov. and Thioalkalivibrio paradoxus sp. nov., novel alkaliphilic, obligately autotrophic, sulfur-oxidizing bacteria capable of growth on thiocyanate, from soda lakes. Int J Syst Evol Microbiol 52:657–664[PubMed]
    [Google Scholar]
  35. Sorokin D. Y., Tourova T. P., Kolganova T. V., Sjollema K. A., Kuenen J. G. 2002b; Thioalkalispira microaerophila gen. nov., sp. nov., a novel lithoautotrophic, sulfur-oxidizing bacterium from a soda lake. Int J Syst Evol Microbiol 52:2175–2182 [View Article][PubMed]
    [Google Scholar]
  36. Sorokin D. Y., Gorlenko V. M., Tourova T. P., Tsapin A. I., Nealson K. H., Kuenen G. J. 2002c; Thioalkalimicrobium cyclicum sp. nov. and Thioalkalivibrio jannaschii sp. nov., novel species of haloalkaliphilic, obligately chemolithoautotrophic sulfur-oxidizing bacteria from hypersaline alkaline Mono Lake (California). Int J Syst Evol Microbiol 52:913–920 [View Article][PubMed]
    [Google Scholar]
  37. Sorokin D. Y., Zhilina T. N., Lysenko A. M., Tourova T. P., Spiridonova E. M. 2006a; Metabolic versatility of haloalkaliphilic bacteria from soda lakes belonging to the AlkalispirillumAlkalilimnicola group. Extremophiles 10:213–220 [View Article][PubMed]
    [Google Scholar]
  38. Sorokin D. Y., Tourova T. P., Kolganova T. V., Spiridonova E. M., Berg I. A., Muyzer G. 2006b; Thiomicrospira halophila sp. nov., a moderately halophilic, obligately chemolithoautotrophic, sulfur-oxidizing bacterium from hypersaline lakes. Int J Syst Evol Microbiol 56:2375–2380 [View Article][PubMed]
    [Google Scholar]
  39. Sorokin D. Y., Tourova T. P., Braker G., Muyzer G. 2007a; Thiohalomonas denitrificans gen. nov., sp. nov. and Thiohalomonas nitratireducens sp. nov., novel obligately chemolithoautotrophic, moderately halophilic, thiodenitrifying gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 57:1582–1589 [View Article][PubMed]
    [Google Scholar]
  40. Sorokin D. Y., Tourova T. P., Bezsoudnova E. Y., Pol A., Muyzer G. 2007b; Denitrification in a binary culture and thiocyanate metabolism in Thiohalophilus thiocyanoxidans gen. nov. sp. nov. - a moderately halophilic chemolithoautotrophic sulfur-oxidizing gammaproteobacterium from hypersaline lakes. Arch Microbiol 187:441–450 [View Article][PubMed]
    [Google Scholar]
  41. Sorokin D. Y., Tourova T. P., Muyzer G., Kuenen G. J. 2008; Thiohalospira halophila gen. nov., sp. nov. and Thiohalospira alkaliphila sp. nov., novel obligately chemolithoautotrophic, halophilic, sulfur-oxidizing gammaproteobacteria from hypersaline habitats. Int J Syst Evol Microbiol 58:1685–1692 [View Article][PubMed]
    [Google Scholar]
  42. Strickland J. D. H., Parsons T. R. 1968; A Manual for Sea Water Analysis. Bull. Fish. Res. Bd. Canada, 167..
  43. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  44. Thiemann B., Imhoff J. F. 1996; Differentiation of Ectothiorhodospiraceae based on their fatty acid composition. Syst Appl Microbiol 19:223–230 [CrossRef]
    [Google Scholar]
  45. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  46. Ventura S., Viti C., Pastorelli R., Giovannetti L. 2000; Revision of species delineation in the genus Ectothiorhodospira . Int J Syst Evol Microbiol 50:583–591 [View Article][PubMed]
    [Google Scholar]
  47. Voroteliak V., Cowley D. M., Florin T. H. 1993; Improved colorimetric determination of urinary thiosulfate to study intermediate sulfur metabolism in humans. Clin Chem 39:2533–2534[PubMed]
    [Google Scholar]
  48. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  49. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  50. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfate-reducing bacteria. In The prokaryotes, 2nd edn. pp. 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. Berlin, Germany: Springer; [CrossRef]
    [Google Scholar]
  51. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886[PubMed]
    [Google Scholar]
  52. Yakimov M. M., Giuliano L., Chernikova T. N., Gentile G., Abraham W. R., Lünsdorf H., Timmis K. N., Golyshin P. N. 2001; Alcalilimnicola halodurans gen. nov., sp. nov., an alkaliphilic, moderately halophilic and extremely halotolerant bacterium, isolated from sediments of soda-depositing Lake Natron, East Africa Rift Valley. Int J Syst Evol Microbiol 51:2133–2143 [View Article][PubMed]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.024844-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024844-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error