1887

Abstract

A novel anaerobic, heterotrophic thermophile was isolated from a deep-sea hydrothermal vent chimney at the Suiyo Seamount in the Izu-Bonin Arc, Japan. The cells were bent, flexible rods, with a single polar flagellum. Growth was observed between 40 and 70 °C (optimum temperature: 60–65 °C; doubling time, 40 min) and between pH 5·0 and 7·5 (optimum pH 6·5). The isolate was a strictly anaerobic heterotroph capable of using complex organic compounds (yeast extract, tryptone, peptone, casein and Casamino acids), ethanol and various organic acids as energy and carbon sources. Hydrogen could serve as a supplementary energy source. Elemental sulfur (S), nitrate or arsenate was required for growth as an electron acceptor. The G+C content of the genomic DNA was 38·6 mol%. Phylogenetic analysis based on 16S rDNA sequences indicated that isolate SSM1 is closely related to BMA (98·1 %). However, the novel isolate could be clearly differentiated from BMA on the basis of its physiological and genetic properties. The name sp. nov. (type strain SSM1=JCM 11476=DSM 14783) is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02479-0
2003-05-01
2020-09-23
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530839.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02479-0&mimeType=html&fmt=ahah

References

  1. Allen S. E., Grimshaw H. M., Parkinson J. A., Quarmby C. 1974; Inorganic constituents: nitrogen. In Chemical Analysis of Ecological Materials pp 184–206Edited by Allen S. E. London: Blackwell Scientific;
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  3. Antoine E., Cilia V., Meunier J. R., Guezennec J., Lesongeur F., Barbier G. 1997; Thermosipho melanensis sp. nov., a new thermophilic anaerobic bacterium belonging to the order Thermotogales , isolated from deep-sea hydrothermal vents in the Southwestern Pacific Ocean. Int J Syst Bacteriol 47:1118–1123 [CrossRef]
    [Google Scholar]
  4. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  5. Benson D. A., Boguski M. S., Lipman D. J., Ostell J., Ouellette B. F. F. 1998; GenBank. Nucleic Acids Res 26:1–7 [CrossRef]
    [Google Scholar]
  6. Caccavo F. Jr, Coates J. D., Rossello-Mora R. A., Ludwig W., Schleifer K. H., Lovley D. R., McInerney M. J. 1996; Geovibrio ferrireducens , a phylogenetically distinct dissimilatory Fe(III)-reducing bacterium. Arch Microbiol 165:370–376 [CrossRef]
    [Google Scholar]
  7. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  8. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  9. Fiala G., Woese C. R., Langworthy T. A., Stetter K. O. 1990; Flexistipes sinusarabici , a novel genus and species of eubacteria occurring in the Atlantis II Deep brines of the Red Sea. Arch Microbiol 154:120–126 [CrossRef]
    [Google Scholar]
  10. Fonselius S. H. 1983; Determination of hydrogen sulfide. In Sea Water Analysis pp 73–80Edited by Grasshoff K., Ehrhardt M., Kremling K. Weinheim: Verlag Chemie;
    [Google Scholar]
  11. Godfroy A., Meunier J.-R., Guezennec J., Lesongeur F., Raguénès G., Rimbault A., Barbier G. 1996; Thermococcus fumicolans sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent in the North Fiji Basin. Int J Syst Bacteriol 46:1113–1119 [CrossRef]
    [Google Scholar]
  12. Godfroy A., Lesongeur F., Raguénès G., Quérellou J., Antoine E., Meunier J.-R., Guezennec J., Barbier G. 1997; Thermococcus hydrothermalis sp. nov., a new hyperthermophilic archaeon isolated from a deep-sea hydrothermal vent. Int J Syst Bacteriol 47:622–626 [CrossRef]
    [Google Scholar]
  13. Gonzalez J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164 [CrossRef]
    [Google Scholar]
  14. Gonzalez J. M., Masuchi Y., Robb F. T., Ammerman J. W., Maeder D. L., Yanagibayashi M., Tamaoka J., Kato C. 1998; Pyrococcus horikoshii sp. nov., a hyperthermophilic archaeon isolated from a hydrothermal vent at the Okinawa Trough. Extremophiles 2:123–130 [CrossRef]
    [Google Scholar]
  15. Greene A. C., Patel B. K. C., Sheehy A. J. 1997; Deferribacter thermophilus gen. nov., sp. nov. a novel thermophilic manganese- and iron-reducing bacterium isolated from a petroleum reservoir. Int J Syst Bacteriol 47:505–509 [CrossRef]
    [Google Scholar]
  16. Harmsen J. M., Prieur D., Jeanthon C. 1997; Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl Environ Microbiol 63:2876–2883
    [Google Scholar]
  17. Johnson D. L., Pilson M. E. Q. 1972; Spectrophotometric determination of arsenite, arsenate, and phosphate in natural water. Anal Chim Acta 58:289–299 [CrossRef]
    [Google Scholar]
  18. Kostka J., Nealson K. H. 1998; Isolation, cultivation and characterization of iron- and manganese-reducing bacteria. In Techniques in Microbial Ecology pp 58–78Edited by Burlage R. S., Atlas R., Stahl D., Geesey G., Sayler G. New York: Oxford University Press;
    [Google Scholar]
  19. Lane D. J. 1985; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 115–176Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  20. L'Haridon S., Reysenbach A.-L., Glenat P., Prieur D., Jeanthon C. 1995; Hot subterranean biosphere in a continental oil reservoir. Nature 377:223–224 [CrossRef]
    [Google Scholar]
  21. Macy J. M., Nunan K., Hagen K. D., Dixon D. R., Harbour P. J., Cahill M., Sly L. I. 1996; Chrysiogenes arsenatis gen. nov. sp. nov., a new arsenate-respiring bacterium isolated from gold mine wastewater. Int J Syst Bacteriol 461153–1157 [CrossRef]
    [Google Scholar]
  22. Maidak B. L., Cole J. R., Lilburn T. G.9 other authors 2000; The RDP (Ribosomal Database Project) continues. Nucleic Acids Res 28:173–174 [CrossRef]
    [Google Scholar]
  23. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef]
    [Google Scholar]
  24. Matsunaga K., Nishimura M. 1969; Determination of nitrate in sea water . Anal Chim Acta. 43350–353
  25. Orphan V. J., Taylor L. T., Hafenbradl D., DeLong E. F. 2000; Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711 [CrossRef]
    [Google Scholar]
  26. Pledger R. J., Baross J. A. 1989; Characterization of an extremely thermophilic archaebacterium isolated from a black smoker polychaete ( Paralvinella sp.) at the Juan de Fuca Ridge. Syst Appl Microbiol 12:249–256 [CrossRef]
    [Google Scholar]
  27. Pledger R. J., Baross J. A. 1991; Preliminary description and nutritional characterization of a chemoorganotrophic archaeobacterium growing at temperatures of up to 110 °C isolated from a submarine hydrothermal vent environment. J Gen Microbiol 137:203–211 [CrossRef]
    [Google Scholar]
  28. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [CrossRef]
    [Google Scholar]
  29. Slobodkin A. I., Jeanthon C., L'Haridon S., Nazina T., Miroshnichenko M., Bonch-Osmolovskaya E. 1999; Dissimilatory reduction of Fe(III) by thermophilic bacteria and archaea in deep subsurface petroleum reservoirs of western Siberia. Curr Microbiol 39:99–102 [CrossRef]
    [Google Scholar]
  30. Slobodkin A., Campbell B., Cary S. C., Bonch-Osmolovskaya E., Jeanthon C. 2001; Evidence for the presence of thermophilic Fe(III)-reducing microorganisms in deep-sea hydrothermal vents at 13°N (East Pacific Rise. FEMS Microbiol Ecol 36:235–243
    [Google Scholar]
  31. Stetter K. O., Fiala G., Huber G., Huber R., Segerer A. 1990; Hyperthermophilic microorganisms. FEMS Microbiol Rev 75:117–124 [CrossRef]
    [Google Scholar]
  32. Stetter K. O., Huber R., Blöchl E., Kurr M., Eden R. D., Fielder M., Cash H., Vance I. 1993; Hyperthermophilic archaea are thriving in deep North Sea and Alaskan oil reservoirs. Nature 365:743–745 [CrossRef]
    [Google Scholar]
  33. Takahata Y., Nishijima M., Hoaki T., Maruyama T. 2000; Distribution and physiological characteristics of hyperthermophiles in the Kubiki oil reservoir in Niigata, Japan. Appl Environ Microbiol 66:73–79 [CrossRef]
    [Google Scholar]
  34. Takai K., Fujiwara Y. 2002; Hydrothermal vents: biodiversity in deep-sea hydrothermal vents. In Encyclopedia of Environmental Microbiology pp 1604–1617Edited by Bitton G. New York: Wiley;
    [Google Scholar]
  35. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  36. Takai K., Inoue A., Horikoshi K. 1999; Thermaerobacter marianensis gen. nov., sp. nov. an aerobic extremely thermophilic marine bacterium from the 11 000 m deep Mariana Trench. Int J Syst Bacteriol 49619–628 [CrossRef]
    [Google Scholar]
  37. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [CrossRef]
    [Google Scholar]
  38. Takai K., Komatsu T., Inagaki F., Horikoshi K. 2001; Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629 [CrossRef]
    [Google Scholar]
  39. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  40. Zillig W., Holz I., Janekovic D.7 other authors 1990; Hyperthermus butylicus , a hyperthermophilic sulfur-reducing archaebacterium that ferments peptides. J Bacteriol 172:3959–3965
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02479-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02479-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

IMAGE

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error