1887

Abstract

A Gram-positive, moderately halophilic and endospore-forming bacterium, designated strain 18OM, was isolated from salted animal hides. The cells were rods and produced ellipsoidal endospores at a terminal position. Strain 18OM was motile, strictly aerobic and grew at 0.5–25 % (w/v) NaCl [optimal growth at 10 % (w/v) NaCl], at between pH 5.0 and 9.0 (optimal growth at pH 7.5) and at temperatures between 15 and 45 °C (optimal growth at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain 18OM was closely related to species of the genus within the phylum . The closest phylogenetic similarity was with G-19.1 (98.4 %), HS286 (97.9 %) and AD-1 (97.4 %). The major cellular fatty acids were anteiso-C (57.9 %), anteiso-C (14.0 %), iso-C (10.8 %) and iso-C (8.1 %). The respiratory isoprenoid quinones were MK-7 (98.5 %) and MK-6 (1.5 %). The DNA G+C content was 42.9 mol%. These features confirmed the placement of strain 18OM within the genus . The DNA–DNA hybridization values between strain 18OM and G-19.1, HS286 and AD-1 were 49 %, 9 % and 15 %, respectively, showing unequivocally that strain 18OM constituted a novel genospecies. On the basis of phylogenetic analysis and phenotypic, genotypic and chemotaxonomic characteristics, strain 18OM is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 18OM ( = CECT 7566 = DSM 22784 = JCM 16412).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024778-0
2011-05-01
2019-10-18
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1206.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024778-0&mimeType=html&fmt=ahah

References

  1. Bauer A. W. , Kirby W. M. , Sherris J. C. , Turck M. . ( 1966; ). Antibiotic susceptibility testing by a standardized single disk method. . Am J Clin Pathol 45:, 493–496.[PubMed]
    [Google Scholar]
  2. Chun J. , Lee J.-H. , Jung Y. , Kim M. , Kim S. , Kim B. K. , Lim Y. W. . ( 2007; ). EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. . Int J Syst Evol Microbiol 57:, 2259–2261. [CrossRef] [PubMed]
    [Google Scholar]
  3. Cowan S. T. , Steel K. J. . ( 1965; ). Manual for the Identification of Medical Bacteria. London:: Cambridge University Press;.
    [Google Scholar]
  4. De Ley J. , Tijtgat R. . ( 1970; ). Evaluation of membrane filter methods for DNA-DNA hybridization. . Antonie van Leeuwenhoek 36:, 461–474. [CrossRef] [PubMed]
    [Google Scholar]
  5. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef] [PubMed]
    [Google Scholar]
  6. Fitch W. M. . ( 1971; ). Toward defining the course of evolution: minimum change for a specific tree topology. . Syst Zool 20:, 406–416. [CrossRef]
    [Google Scholar]
  7. García M. T. , Gallego V. , Ventosa A. , Mellado E. . ( 2005; ). Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. . Int J Syst Evol Microbiol 55:, 1789–1795. [CrossRef] [PubMed]
    [Google Scholar]
  8. Johnson J. L. . ( 1994; ). Similarity analysis of DNAs. . In Methods for General and Molecular Bacteriology, pp. 655–681. Edited by Geardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, D.C.:: American Society for Microbiology;.
    [Google Scholar]
  9. Koser S. A. . ( 1923; ). Utilization of the salts of organic acids by the colon-aerogenes group. . J Bacteriol 8:, 493–520.[PubMed]
    [Google Scholar]
  10. Lee S.-Y. , Oh T.-K. , Yoon J.-H. . ( 2010; ). Thalassobacillus hwangdonensis sp. nov., isolated from a tidal flat sediment. . Int J Syst Evol Microbiol 60:, 2108–2112. [CrossRef] [PubMed]
    [Google Scholar]
  11. Logan N. A. , Berge O. , Bishop A. H. , Busse H.-J. , De Vos P. , Fritze D. , Heyndrickx M. , Kämpfer P. , Rabinovitch L. et al. ( 2009; ). Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. . Int J Syst Evol Microbiol 59:, 2114–2121. [CrossRef] [PubMed]
    [Google Scholar]
  12. Ludwig W. , Strunk O. , Westram R. , Richter L. , Meier H. , Yadhukumar , Buchner A. , Lai T. , Steppi S. et al. ( 2004; ). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef] [PubMed]
    [Google Scholar]
  13. Marmur J. . ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. . J Mol Biol 3:, 208–218. [CrossRef]
    [Google Scholar]
  14. Marmur J. , Doty P. . ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. . J Mol Biol 5:, 109–118. [CrossRef] [PubMed]
    [Google Scholar]
  15. Márquez M. C. , Carrasco I. J. , Xue Y. , Ma Y. , Cowan D. A. , Jones B. E. , Grant W. D. , Ventosa A. . ( 2008; ). Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. . Int J Syst Evol Microbiol 58:, 1922–1926. [CrossRef] [PubMed]
    [Google Scholar]
  16. Owen R. J. , Hill L. R. . ( 1979; ). The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. . In Identification Methods for Microbiologists, , 2nd edn., pp. 217–296. Edited by Skinner F. A. , Lovelock D. W. . . London:: Academic Press;.
    [Google Scholar]
  17. Quesada E. , Ventosa A. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1984; ). Deleya halophila, a new species of moderately halophilic bacteria. . Int J Syst Bacteriol 34:, 287–292. [CrossRef]
    [Google Scholar]
  18. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  19. Sanchez-Porro C. , Amoozegar M. A. , Rohban R. , Hajighasemi M. , Ventosa A. . ( 2009; a). Thalassobacillus cyri sp. nov., a moderately halophilic Gram-positive bacterium from a hypersaline lake. . Int J Syst Evol Microbiol 59:, 2565–2570.[CrossRef]
    [Google Scholar]
  20. Sánchez-Porro C. , de la Haba R. R. , Soto-Ramírez N. , Márquez M. C. , Montalvo-Rodríguez R. , Ventosa A. . ( 2009; b). Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov.. Int J Syst Evol Microbiol 59:, 397–405. [CrossRef] [PubMed]
    [Google Scholar]
  21. Stackebrandt E. , Goebel B. M. . ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. . Int J Syst Bacteriol 44:, 846–849. [CrossRef]
    [Google Scholar]
  22. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. D. , Kämpfer P. , Maiden M. C. J. , Nesme X. , Rosselló-Mora R. , Swings J. et al. ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  23. Ventosa A. , Quesada E. , Rodriguez-Valera F. , Ruiz-Berraquero F. , Ramos-Cormenzana A. . ( 1982; ). Numerical taxonomy of moderately halophilic Gram-negative rods. . J Gen Microbiol 128:, 1959–1968.
    [Google Scholar]
  24. Ventosa A. , Nieto J. J. , Oren A. . ( 1998; ). Biology of moderately halophilic aerobic bacteria. . Microbiol Mol Biol Rev 62:, 504–544.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024778-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024778-0
Loading

Data & Media loading...

Supplements

Combined [ PDF] file 102 KB

PDF

Phase-contrast micrograph of cells of strain 18OM . Bar, 10 µm.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error