1887

Abstract

A Gram-positive, moderately halophilic and endospore-forming bacterium, designated strain 18OM, was isolated from salted animal hides. The cells were rods and produced ellipsoidal endospores at a terminal position. Strain 18OM was motile, strictly aerobic and grew at 0.5–25 % (w/v) NaCl [optimal growth at 10 % (w/v) NaCl], at between pH 5.0 and 9.0 (optimal growth at pH 7.5) and at temperatures between 15 and 45 °C (optimal growth at 37 °C). Phylogenetic analysis based on 16S rRNA gene sequence comparisons showed that strain 18OM was closely related to species of the genus within the phylum . The closest phylogenetic similarity was with G-19.1 (98.4 %), HS286 (97.9 %) and AD-1 (97.4 %). The major cellular fatty acids were anteiso-C (57.9 %), anteiso-C (14.0 %), iso-C (10.8 %) and iso-C (8.1 %). The respiratory isoprenoid quinones were MK-7 (98.5 %) and MK-6 (1.5 %). The DNA G+C content was 42.9 mol%. These features confirmed the placement of strain 18OM within the genus . The DNA–DNA hybridization values between strain 18OM and G-19.1, HS286 and AD-1 were 49 %, 9 % and 15 %, respectively, showing unequivocally that strain 18OM constituted a novel genospecies. On the basis of phylogenetic analysis and phenotypic, genotypic and chemotaxonomic characteristics, strain 18OM is considered to represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is 18OM ( = CECT 7566 = DSM 22784 = JCM 16412).

Funding
This study was supported by the:
  • , Spanish Ministerio de Educación y Ciencia , (Award BIO2009-10138)
  • , National Science Foundation , (Award DEB-0919290)
  • , Junta de Andalucía , (Award P06-CVI-01829)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024778-0
2011-05-01
2020-07-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1206.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024778-0&mimeType=html&fmt=ahah

References

  1. Bauer A. W., Kirby W. M., Sherris J. C., Turck M. 1966; Antibiotic susceptibility testing by a standardized single disk method. Am J Clin Pathol 45:493–496[PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  3. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  4. De Ley J., Tijtgat R. 1970; Evaluation of membrane filter methods for DNA-DNA hybridization. Antonie van Leeuwenhoek 36:461–474 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  7. García M. T., Gallego V., Ventosa A., Mellado E. 2005; Thalassobacillus devorans gen. nov., sp. nov., a moderately halophilic, phenol-degrading, Gram-positive bacterium. Int J Syst Evol Microbiol 55:1789–1795 [CrossRef][PubMed]
    [Google Scholar]
  8. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Bacteriology pp. 655–681 Edited by Geardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, D.C.: American Society for Microbiology;
    [Google Scholar]
  9. Koser S. A. 1923; Utilization of the salts of organic acids by the colon-aerogenes group. J Bacteriol 8:493–520[PubMed]
    [Google Scholar]
  10. Lee S.-Y., Oh T.-K., Yoon J.-H. 2010; Thalassobacillus hwangdonensis sp. nov., isolated from a tidal flat sediment. Int J Syst Evol Microbiol 60:2108–2112 [CrossRef][PubMed]
    [Google Scholar]
  11. Logan N. A., Berge O., Bishop A. H., Busse H.-J., De Vos P., Fritze D., Heyndrickx M., Kämpfer P., Rabinovitch L. et al. 2009; Proposed minimal standards for describing new taxa of aerobic, endospore-forming bacteria. Int J Syst Evol Microbiol 59:2114–2121 [CrossRef][PubMed]
    [Google Scholar]
  12. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. et al. 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  14. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5:109–118 [CrossRef][PubMed]
    [Google Scholar]
  15. Márquez M. C., Carrasco I. J., Xue Y., Ma Y., Cowan D. A., Jones B. E., Grant W. D., Ventosa A. 2008; Aquisalibacillus elongatus gen. nov., sp. nov., a moderately halophilic bacterium of the family Bacillaceae isolated from a saline lake. Int J Syst Evol Microbiol 58:1922–1926 [CrossRef][PubMed]
    [Google Scholar]
  16. Owen R. J., Hill L. R. 1979; The estimation of base compositions, base pairing and genome size of bacterial deoxyribonucleic acids. In Identification Methods for Microbiologists, 2nd edn. pp. 217–296 Edited by Skinner F. A., Lovelock D. W. London: Academic Press;
    [Google Scholar]
  17. Quesada E., Ventosa A., Ruiz-Berraquero F., Ramos-Cormenzana A. 1984; Deleya halophila, a new species of moderately halophilic bacteria. Int J Syst Bacteriol 34:287–292 [CrossRef]
    [Google Scholar]
  18. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  19. Sanchez-Porro C., Amoozegar M. A., Rohban R., Hajighasemi M., Ventosa A. 2009a; Thalassobacillus cyri sp. nov., a moderately halophilic Gram-positive bacterium from a hypersaline lake. Int J Syst Evol Microbiol 59:2565–2570 [CrossRef]
    [Google Scholar]
  20. Sánchez-Porro C., de la Haba R. R., Soto-Ramírez N., Márquez M. C., Montalvo-Rodríguez R., Ventosa A. 2009b; Description of Kushneria aurantia gen. nov., sp. nov., a novel member of the family Halomonadaceae, and a proposal for reclassification of Halomonas marisflavi as Kushneria marisflavi comb. nov., of Halomonas indalinina as Kushneria indalinina comb. nov. and of Halomonas avicenniae as Kushneria avicenniae comb. nov.. Int J Syst Evol Microbiol 59:397–405 [CrossRef][PubMed]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Stackebrandt E., Frederiksen W., Garrity G. M., Grimont P. A. D., Kämpfer P., Maiden M. C. J., Nesme X., Rosselló-Mora R., Swings J. et al. 2002; Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. Int J Syst Evol Microbiol 52:1043–1047 [CrossRef][PubMed]
    [Google Scholar]
  23. Ventosa A., Quesada E., Rodriguez-Valera F., Ruiz-Berraquero F., Ramos-Cormenzana A. 1982; Numerical taxonomy of moderately halophilic Gram-negative rods. J Gen Microbiol 128:1959–1968
    [Google Scholar]
  24. Ventosa A., Nieto J. J., Oren A. 1998; Biology of moderately halophilic aerobic bacteria. Microbiol Mol Biol Rev 62:504–544[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024778-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024778-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error