1887

Abstract

Two Gram-reaction-negative, rod-shaped, gliding, yellow-pigmented bacterial strains, designated ZLD-17 and ZLD-29, were isolated from arid soil samples collected from Xinjiang Province, north-west China, and subjected to analysis using a polyphasic taxonomic approach. Both novel strains required 1.0–2.0 % (w/v) sea salts for optimal growth. Phylogenetic analysis based on 16S rRNA gene sequences indicated that these two strains belong to the genus within the class . Strain ZLD-17 showed highest 16S rRNA gene sequence similarities to KCTC 22007 (96.9 %), DSM 21749 (96.8 %) and KCTC 12204 (96.8 %), whereas strain ZLD-29 showed highest sequence similarities to DSM 18481 (96.0 %) and DSM 2043 (95.9 %). 16S rRNA gene sequence similarity between ZLD-17 and ZLD-29 was 96.1 %. The DNA GC contents of strains ZLD-17 and ZLD-29 were 67.9 and 68.2 mol%, respectively. The major cellular fatty acids of both strains were summed feature 3 (iso-C 2-OH and/or Cω7), iso-Cω9, iso-C, C and iso-C 3-OH; their predominant isoprenoid quinone was Q-8 and their major polar lipids were diphosphatidylglycerol, phosphatidylethanolamine and phosphatidylglycerol. Based on their phenotypic characteristics, phylogenetic position as determined by 16S rRNA gene sequence analysis and chemotaxonomic data, strains ZLD-17 ( = CCTCC AB 207174  = KCTC 23076) and ZLD-29 ( = CCTCC AB 207175 = KCTC 23077) represent two novel species of the genus , for which the names sp. nov. and sp. nov. are proposed, respectively.

Funding
This study was supported by the:
  • , NWSUAF China , (Award Z111020910)
  • , R & D Infrastructure and Facility Development Program from the Ministry of Science and Technology of the People’s Republic of China , (Award 2005DKA21208)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024448-0
2011-09-01
2020-07-03
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2259.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024448-0&mimeType=html&fmt=ahah

References

  1. Aslam Z., Yasir M., Jeon C. O., Chung Y. R. 2009; Lysobacter oryzae sp. nov., isolated from the rhizosphere of rice (Oryza sativa L.). Int J Syst Evol Microbiol 59:675–680 [CrossRef][PubMed]
    [Google Scholar]
  2. Bae H.-S., Im W.-T., Lee S.-T. 2005; Lysobacter concretionis sp. nov., isolated from anaerobic granules in an upflow anaerobic sludge blanket reactor. Int J Syst Evol Microbiol 55:1155–1161 [CrossRef][PubMed]
    [Google Scholar]
  3. Bowman J. P. 2000; Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:1861–1868[PubMed]
    [Google Scholar]
  4. Christensen P., Cook F. D. 1978; Lysobacter, a new genus of nonfruiting, gliding bacteria with a high base ratio. Int J Syst Bacteriol 28:367–393 [CrossRef]
    [Google Scholar]
  5. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  6. Doetsch R. N. 1981; Determinative methods of light microscopy. In Manual of Methods for General Bacteriology pp. 21–33 Edited by Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Gordon R. E., Smith M. M. 1955; Proposed group of characters for the separation of Streptomyces and Nocardia . J Bacteriol 69:147–150[PubMed]
    [Google Scholar]
  8. Kinyon J. M., Harris D. L. 1979; Treponema innocens, a new species of intestinal bacteria, and emended description of the type strain of Treponema hyodysenteriae Harris et al. . Int J Syst Bacteriol 29:102–109 [CrossRef]
    [Google Scholar]
  9. Kovács N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703–704 [CrossRef][PubMed]
    [Google Scholar]
  10. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  11. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184[PubMed]
    [Google Scholar]
  12. Lin Y.-C., Uemori K., de Briel D. A., Arunpairojana V., Yokota A. 2004; Zimmermannella helvola gen. nov., sp. nov., Zimmermannella alba sp. nov., Zimmermannella bifida sp. nov., Zimmermannella faecalis sp. nov. and Leucobacter albus sp. nov., novel members of the family Microbacteriaceae . Int J Syst Evol Microbiol 54:1669–1676 [CrossRef][PubMed]
    [Google Scholar]
  13. Liu M., Liu Y., Wang Y., Luo X., Dai J., Fang C. 2011; Lysobacter xinjiangensis sp. nov., a moderately thermotolerant and alkalitolerant bacterium isolated from a gamma-irradiated sand soil sample. Int J Syst Evol Microbiol 61:433–437 [CrossRef][PubMed]
    [Google Scholar]
  14. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  15. MIDI 1999 Sherlock Microbial Identification System Operating Manual, version 3.0. Newark, DE: MIDI, Inc.
  16. Oh K. H., Kang S. J., Jung Y. T., Oh T. K., Yoon J. H. 2011; Lysobacter dokdonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 61:1089–1093 [CrossRef][PubMed]
    [Google Scholar]
  17. Park J. H., Kim R., Aslam Z., Jeon C. O., Chung Y. R. 2008; Lysobacter capsici sp. nov., with antimicrobial activity, isolated from the rhizosphere of pepper, and emended description of the genus Lysobacter . Int J Syst Evol Microbiol 58:387–392 [CrossRef][PubMed]
    [Google Scholar]
  18. Romanenko L. A., Uchino M., Tanaka N., Frolova G. M., Mikhailov V. V. 2008; Lysobacter spongiicola sp. nov., isolated from a deep-sea sponge. Int J Syst Evol Microbiol 58:370–374 [CrossRef][PubMed]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Woods W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Srinivasan S., Kim M. K., Sathiyaraj G., Kim H.-B., Kim Y.-J., Yang D.-C. 2010; Lysobacter soli sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 60:1543–1547 [CrossRef][PubMed]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [CrossRef]
    [Google Scholar]
  22. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  23. Ten L. N., Jung H.-M., Im W.-T., Yoo S.-A., Oh H.-M., Lee S.-T. 2009; Lysobacter panaciterrae sp. nov., isolated from soil of a ginseng field. Int J Syst Evol Microbiol 59:958–963 [CrossRef][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef][PubMed]
    [Google Scholar]
  25. Tindall B. J. 1990; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  26. Wang Y., Dai J., Zhang L., Luo X., Li Y., Chen G., Tang Y., Meng Y., Fang C. 2009; Lysobacter ximonensis sp. nov., isolated from soil. Int J Syst Evol Microbiol 59:786–789 [CrossRef][PubMed]
    [Google Scholar]
  27. Wang G. L., Wang L., Chen H. H., Shen B., Li S. P., Jiang J. D. 2011; Lysobacter ruishenii sp. nov., a chlorothalonil-degrading bacterium isolated from a long-term chlorothalonil-contaminated soil. Int J Syst Evol Microbiol 61:674–679 [CrossRef][PubMed]
    [Google Scholar]
  28. Weon H.-Y., Kim B.-Y., Baek Y.-K., Yoo S.-H., Kwon S.-W., Stackebrandt E., Go S.-J. 2006; Two novel species, Lysobacter daejeonensis sp. nov. and Lysobacter yangpyeongensis sp. nov., isolated from Korean greenhouse soils. Int J Syst Evol Microbiol 56:947–951 [CrossRef][PubMed]
    [Google Scholar]
  29. Weon H.-Y., Kim B.-Y., Kim M.-K., Yoo S.-H., Kwon S.-W., Go S.-J., Stackebrandt E. 2007; Lysobacter niabensis sp. nov. and Lysobacter niastensis sp. nov., isolated from greenhouse soils in Korea. Int J Syst Evol Microbiol 57:548–551 [CrossRef][PubMed]
    [Google Scholar]
  30. Xie C. H., Yokota A. 2003; Phylogenetic analyses of Lampropedia hyalina based on the 16S rRNA gene sequence. J Gen Appl Microbiol 49:345–349 [CrossRef][PubMed]
    [Google Scholar]
  31. Yassin A. F., Chen W. M., Hupfer H., Siering C., Kroppenstedt R. M., Arun A. B., Lai W. A., Shen F. T., Rekha P. D., Young C. C. 2007; Lysobacter defluvii sp. nov., isolated from municipal solid waste. Int J Syst Evol Microbiol 57:1131–1136 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024448-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024448-0
Loading

Data & Media loading...

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error