1887

Abstract

A novel bacterium, strain B33D1, isolated from agricultural soil, was characterized taxonomically and phylogenetically. Strain B33D1 was a Gram-positive, aerobic rod of medium length that formed long chains on a common laboratory medium. However, B33D1 grew poorly on the surface of agar plates and was sensitive to desiccation. The optimal growth temperature was 30 °C (range 19–38 °C). The organism grew well on a variety of sugars and was capable of utilizing a few amino acids as sole carbon sources. Phylogenetically, the most closely related described species to strain B33D1 was , which possessed 86 % 16S rRNA sequence similarity. However, a number of 16S rRNA gene clones derived from soil samples possessed up to 93 % sequence similarity. These results placed strain B33D1 within the subclass of the phylum . The novel genus and species gen. nov., sp. nov. is proposed, with strain B33D1 (=ATCC BAA-492=DSM 14954) as the type strain.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02438-0
2003-03-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530485.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02438-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Benson H. J. 1990 Microbiological Applications: a Laboratory Manual in General Microbiology Dubuque, IA: Wm. C. Brown;
    [Google Scholar]
  3. Billi D., Potts M. 2002; Life and death of dried prokaryotes. Res Microbiol 153:7–12 [CrossRef]
    [Google Scholar]
  4. Bligh E. G., Dyer W. J. 1954; A rapid method of total lipid extraction and purification. Can J Biochem Physiol 37:911–917
    [Google Scholar]
  5. Carreto L., Moore E., Nobre M. F., Wait R., Riley P. W., Sharp R. J., da Costa M. S. 1996; Rubrobacter xylanophilus sp. nov., a new thermophilic species isolated from a thermally polluted effluent. Int J Syst Bacteriol 46:460–465 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  7. Ferreira A. C., Nobre M. F., Moore E., Rainey F. A., Battista J. R., da Costa M. S. 1999; Characterization and radiation resistance of new isolates of Rubrobacter radiotolerans and Rubrobacter xylanophilus . Extremophiles 3:235–238 [CrossRef]
    [Google Scholar]
  8. Furlong M. A., Singleton D. R., Coleman D. C., Whitman W. B. 2002; Molecular and culture-based analyses of prokaryotic communities from an agricultural soil and the burrows and casts of the earthworm Lumbricus rubellus . Appl Environ Microbiol 68:1265–1279 [CrossRef]
    [Google Scholar]
  9. Guckert J. B., Antworth C. P., Nichols P. D., White D. C. 1985; Phospholipid ester-linked fatty acid profiles as reproducible assays for changes in prokaryotic community structure of estuarine sediments. FEMS Microbiol Ecol (FEMS Microbiol Lett Special Issue 31147–158 [CrossRef]
  10. Hahn T.-W., Willby M. J., Krause D. C. 1998; HMW1 is required for cytadhesin P1 trafficking to the attachment organelle in Mycoplasma pneumoniae . J Bacteriol 180:1270–1276
    [Google Scholar]
  11. Heuer H., Kroppenstedt R. M., Lottmann J., Berg G., Smalla K. 2002; Effects of T4 lysozyme release from transgenic potato roots on bacterial rhizosphere communities are negligible relative to natural factors. Appl Environ Microbiol 68:1325–1335 [CrossRef]
    [Google Scholar]
  12. Holmes A. J., Bowyer J., Holley M. P., O'Donoghue M., Montgomery M., Gillings M. R. 2000; Diverse, yet-to-be-cultured members of the Rubrobacter subdivision of the Actinobacteria are widespread in Australian arid soils. FEMS Microbiol Ecol 33:111–120 [CrossRef]
    [Google Scholar]
  13. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Sequencing Techniques in Bacterial Systematics pp 115–175Edited by Stackebrandt E., Goodfellow M. New York: Wiley;
    [Google Scholar]
  14. Liesack W., Stackebrandt E. 1992; Occurrence of novel groups of the domain Bacteria as revealed by analysis of genetic material isolated from an Australian terrestrial environment. J Bacteriol 174:5072–5078
    [Google Scholar]
  15. Mattimore V., Battista J. R. 1996; Radioresistance of Deinococcus radiodurans : functions necessary to survive ionizing radiation are also necessary to survive prolonged desiccation. J Bacteriol 178:633–637
    [Google Scholar]
  16. McCaig A. E., Glover L. A., Prosser J. I. 1999; Molecular analysis of bacterial community structure and diversity in unimproved and improved upland grass pastures. Appl Environ Microbiol 65:1721–1730
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  18. Pearson W. R., Lipman D. J. 1988; Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85:2444–2448 [CrossRef]
    [Google Scholar]
  19. Rheims H., Spröer C., Rainey F. A., Stackebrandt E. 1996; Molecular biological evidence for the occurrence of uncultured members of the actinomycete line of descent in different environments and geographical locations. Microbiology 142:2863–2870 [CrossRef]
    [Google Scholar]
  20. Röling W. F. M., van Breukelen B. M., Braster M., Lin B., van Verseveld H. W. 2001; Relationships between microbial community structure and hydrochemistry in a landfill leachate-polluted aquifer. Appl Environ Microbiol 67:4619–4629 [CrossRef]
    [Google Scholar]
  21. Saito T., Terato H., Yamamoto O. 1994; Pigments of Rubrobacter radiotolerans . Arch Microbiol 162:414–421 [CrossRef]
    [Google Scholar]
  22. Sanders S. W., Maxcy R. B. 1979; Isolation of radiation-resistant bacteria without exposure to irradiation. Appl Environ Microbiol 38:436–439
    [Google Scholar]
  23. Suzuki K., Collins M. D., Iijima E., Komagata K. 1988; Chemotaxonomic characterization of a radiotolerant bacterium Arthrobacter radiotolerans : description of Rubrobacter radiotolerans gen. nov., comb. nov. FEMS Microbiol Lett 5233–40 [CrossRef]
    [Google Scholar]
  24. Ueda T., Suga Y., Matsuguchi T. 1995; Molecular phylogenetic analysis of a soil microbial community in a soybean field. Eur J Soil Sci 46:415–421 [CrossRef]
    [Google Scholar]
  25. Valinsky L., Della Vedova G., Scupham A. J. 8 other authors 2002; Analysis of bacterial community composition by oligonucleotide fingerprinting of rRNA genes. Appl Environ Microbiol 68:3243–3250 [CrossRef]
    [Google Scholar]
  26. White D. C., Davis W. M., Nickels J. S., King J. D., Bobbie R. J. 1979; Determination of the sedimentary microbial biomass by extractable lipid phosphate. Oecologia 40:51–62 [CrossRef]
    [Google Scholar]
  27. Whitman W. B., Shieh J., Sohn S., Caras D. S., Premachandran U. 1986; Isolation and characterization of 22 mesophilic methanococci. Syst Appl Microbiol 7:235–240 [CrossRef]
    [Google Scholar]
  28. Yoshinaka T., Yano K., Yamaguchi H. 1973; Isolation of highly radioresistant bacterium, Arthrobacter radiotolerans nov. sp. Agric Biol Chem 37:2269–2275 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02438-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02438-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error