1887

Abstract

A novel anaerobic, moderately thermophilic, NaCl-requiring fermentative bacterium, strain OS1, was isolated from oil production water collected from Alaska, USA. Cells were Gram-negative, non-motile, non-spore-forming rods (1.7–2.7 × 0.4–0.5 µm). The G+C content of the genomic DNA of strain OS1 was 46.6 mol%. The optimum temperature, pH and NaCl concentration for growth of strain OS1 were 55 °C, pH 7 and 10 g l, respectively. The bacterium fermented -fructose, -glucose, maltose, -mannose, α-ketoglutarate, -glutamate, malonate, pyruvate, -tartrate, -asparagine, Casamino acids, -cysteine, -histidine, -leucine, -phenylalanine, -serine, -threonine, -valine, inositol, inulin, tryptone and yeast extract. When grown on -glucose, 3.86 mol hydrogen and 1.4 mol acetate were produced per mol substrate. Thiosulfate, sulfur and -cystine were reduced to sulfide, and crotonate was reduced to butyrate with glucose as the electron donor. 16S rRNA gene sequence analysis indicated that strain OS1 was related to (99.7 % similarity to the type strain), a member of the phylum . DNA–DNA hybridization between strain OS1 and DSM 13490 yielded 68 % relatedness. Unlike , strain OS1 fermented malonate, maltose, tryptone, -leucine and -phenylalanine, but not citrate, fumarate, lactate, -malate, glycerol, pectin or starch. The major cellular fatty acid of strain OS1 was iso-C (91 % of the total). Strain OS1 also contained iso-C 3-OH (3 %), which was absent from , and iso-C (2 %), which was absent from . On the basis of these results, strain OS1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is OS1 ( = DSM 22491  = ATCC BAA-1850). An emended description of the genus is also given.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024349-0
2012-04-01
2019-10-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/832.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024349-0&mimeType=html&fmt=ahah

References

  1. Allen T. D., Kraus P. F., Lawson P. A., Drake G. R., Balkwill D. L., Tanner R. S.. ( 2008;). Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. . Int J Syst Evol Microbiol 58:, 1313–1317. [CrossRef][PubMed]
    [Google Scholar]
  2. Angenent L. T., Karim K., Al-Dahhan M. H., Wrenn B. A., Domíguez-Espinosa R.. ( 2004;). Production of bioenergy and biochemicals from industrial and agricultural wastewater. . Trends Biotechnol 22:, 477–485. [CrossRef][PubMed]
    [Google Scholar]
  3. Balch W. E., Wolfe R. S.. ( 1976;). New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. . Appl Environ Microbiol 32:, 781–791.[PubMed]
    [Google Scholar]
  4. Davila-Vazquez G., Arriaga S., Alatriste-Mondragón F., de León-Rodríguez A., Rosales-Colunga L., Razo-Flores E.. ( 2008;). Fermentative biohydrogen production: trends and perspectives. . Rev Environ Sci Biotechnol 7:, 27–45. [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A.. ( 1970;). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef][PubMed]
    [Google Scholar]
  6. Duncan K. E., Gieg L. M., Parisi V. A., Tanner R. S., Tringe S. G., Bristow J., Suflita J. M.. ( 2009;). Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. . Environ Sci Technol 43:, 7977–7984. [CrossRef][PubMed]
    [Google Scholar]
  7. Escara J. F., Hutton J. R.. ( 1980;). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. . Biopolymers 19:, 1315–1327. [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J.. ( 1985;). Confidence limits on phylogenies: an approach using the bootstrap. . Evolution 39:, 783–791. [CrossRef]
    [Google Scholar]
  9. Gieg L. M., Davidova I. A., Duncan K. E., Suflita J. M.. ( 2010;). Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. . Environ Microbiol 12:, 3074–3086. [CrossRef][PubMed]
    [Google Scholar]
  10. Gihring T. M., Moser D. P., Lin L.-H., Davidson M., Onstott T. C., Morgan L., Milleson M., Kieft T. L., Trimarco E.. & other authors ( 2006;). The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. . Geomicrobiol J 23:, 415–430. [CrossRef]
    [Google Scholar]
  11. Godon J.-J., Morinière J., Moletta M., Gaillac M., Bru V., Delgènes J.-P.. ( 2005;). Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. . Environ Microbiol 7:, 213–224. [CrossRef][PubMed]
    [Google Scholar]
  12. Han S.-K., Shin H.-S.. ( 2004;). Biohydrogen production by anaerobic fermentation of food waste. . Int J Hydrogen Energy 29:, 569–577. [CrossRef]
    [Google Scholar]
  13. Hugenholtz P., Hooper S. D., Kyrpides N. C.. ( 2009;). Focus: Synergistetes. . Environ Microbiol 11:, 1327–1329. [CrossRef][PubMed]
    [Google Scholar]
  14. Hungate R. E.. ( 1969;). A roll tube method for cultivation of strict anaerobes. . Methods Microbiol 3B:, 117–132. [CrossRef]
    [Google Scholar]
  15. Huß V. A. R., Festl H., Schleifer K. H.. ( 1983;). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. . Syst Appl Microbiol 4:, 184–192. [CrossRef]
    [Google Scholar]
  16. Jahnke K. D.. ( 1992;). basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. . J Microbiol Methods 15:, 61–73. [CrossRef]
    [Google Scholar]
  17. Johnson J. L.. ( 1994;). Similarity analysis of DNAs. . In Methods for General and Molecular Microbiology, pp. 655–682. Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  18. Jumas-Bilak E., Roudière L., Marchandin H.. ( 2009;). Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. . Int J Syst Evol Microbiol 59:, 1028–1035. [CrossRef][PubMed]
    [Google Scholar]
  19. Kapdan I. K., Kargi F.. ( 2006;). Biol-hydrogen production from waste materials. . Enzyme Microb Technol 38:, 569–582. [CrossRef]
    [Google Scholar]
  20. Kaster K. M., Bonaunet K., Berland H., Kjeilen-Eilertsen G., Brakstad O. G.. ( 2009;). Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. . Antonie van Leeuwenhoek 96:, 423–439. [CrossRef][PubMed]
    [Google Scholar]
  21. Kengen S. W. M., Goorissen H. P., Verhaart M., Stams A. J. M., van Niel E. W. J., Claassen P. A. M.. ( 2009;). Biological hydrogen production by anaerobic microoganisms. . In Biofuels, pp. 197–221. Edited by Soetaert W., Vandamme E. J... Chichester:: Wiley;. [CrossRef]
    [Google Scholar]
  22. Krakat N., Schmidt S., Scherer P.. ( 2011;). Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. . Bioresour Technol 102:, 5692–5701. [CrossRef][PubMed]
    [Google Scholar]
  23. LaPara T. M., Nakatsu C. H., Pantea L., Alleman J. E.. ( 2000;). Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. . Appl Environ Microbiol 66:, 3951–3959. [CrossRef][PubMed]
    [Google Scholar]
  24. Lee H.-S., Salerno M. B., Rittmann B. E.. ( 2008;). Thermodynamic evaluation on H2 production in glucose fermentation. . Environ Sci Technol 42:, 2401–2407. [CrossRef][PubMed]
    [Google Scholar]
  25. Li C., Fang H.. ( 2007;). Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. . Crit Rev Environ Sci Technol 37:, 1–39. [CrossRef]
    [Google Scholar]
  26. Li T., Mazéas L., Sghir A., Leblon G., Bouchez T.. ( 2009;). Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. . Environ Microbiol 11:, 889–904. [CrossRef][PubMed]
    [Google Scholar]
  27. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S.. & other authors ( 2004;). arb: a software environment for sequence data. . Nucleic Acids Res 32:, 1363–1371. [CrossRef][PubMed]
    [Google Scholar]
  28. Maune M. W., Tanner R. S.. ( 2008;). Production of hydrogen from glucose or raw sewage by novel isolates of Anaerobaculum. . In Abstracts of the 108th General Meeting of the American Society for Microbiology, 1–5 June 2008, Boston, MA, USA, abstract I-029. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  29. Menes R. J., Muxí L.. ( 2002;). Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum. . Int J Syst Evol Microbiol 52:, 157–164.[PubMed]
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman B.. ( 1989;). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  31. Munson M. A., Banerjee A., Watson T. F., Wade W. G.. ( 2004;). Molecular analysis of the microflora associated with dental caries. . J Clin Microbiol 42:, 3023–3029. [CrossRef][PubMed]
    [Google Scholar]
  32. Nandi R., Sengupta S.. ( 1998;). Microbial production of hydrogen: an overview. . Crit Rev Microbiol 24:, 61–84. [CrossRef][PubMed]
    [Google Scholar]
  33. Ohkuma M., Kudo T.. ( 1996;). Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus. . Appl Environ Microbiol 62:, 461–468.[PubMed]
    [Google Scholar]
  34. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R.. ( 1994;). fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. . Comput Appl Biosci 10:, 41–48.[PubMed]
    [Google Scholar]
  35. Orphan V. J., Taylor L. T., Hafenbradl D., Delong E. F.. ( 2000;). Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. . Appl Environ Microbiol 66:, 700–711. [CrossRef][PubMed]
    [Google Scholar]
  36. Rees G. N., Patel B. K., Grassia G. S., Sheehy A. J.. ( 1997;). Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. . Int J Syst Bacteriol 47:, 150–154. [CrossRef][PubMed]
    [Google Scholar]
  37. Sasaki K., Haruta S., Tatara M., Yamazawa A., Ueno Y., Ishii M., Igarashi Y.. ( 2006;). Microbial community in methanogenic packed-bed reactor successfully operating at short hydraulic retention time. . J Biosci Bioeng 101:, 271–273. [CrossRef][PubMed]
    [Google Scholar]
  38. Sasaki K., Haruta S., Ueno Y., Ishii M., Igarashi Y.. ( 2007;). Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. . Appl Microbiol Biotechnol 75:, 941–952. [CrossRef][PubMed]
    [Google Scholar]
  39. Schröder C., Selig M., Schönheit P.. ( 1994;). Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. . Arch Microbiol 161:, 460–470.
    [Google Scholar]
  40. Stackebrandt E., Ebers J.. ( 2006;). Taxonomic parameters revisited: tarnished gold standards. . Microbiol Today 33:, 152–155.
    [Google Scholar]
  41. Tanner R. S.. ( 2007;). Cultivation of bacteria and fungi. . In Manual of Environmental Microbiology, , 3rd edn., pp. 69–78. Edited by Hurst C. J., Crawford R. L., Mills A. L., Garland J. L., Stetzenbach L. D., Lipson D. A... Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  42. Thauer R. K., Jungermann K., Decker K.. ( 1977;). Energy conservation in chemotrophic anaerobic bacteria. . Bacteriol Rev 41:, 100–180.[PubMed]
    [Google Scholar]
  43. US Department of Energy ( 2007;). Hydrogen, Fuel Cells, and Infrastructure Technologies Program: Multi-year Research, Development and Demonstration Plan. Washington, DC:: US Department of Energy;.
    [Google Scholar]
  44. van der Kraan G. M., Bruining J., Lomans B. P., van Loosdrecht M. C. M., Muyzer G.. ( 2010;). Microbial diversity of an oil-water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments. . FEMS Microbiol Ecol 71:, 428–443. [CrossRef][PubMed]
    [Google Scholar]
  45. van Niel E. W. J., Budde M. A. W., de Haas G. G., van der Wal F. J., Claassen P. A. M., Stams A. J. M.. ( 2002;). Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii. . Int J Hydrogen Energy 27:, 1391–1398. [CrossRef]
    [Google Scholar]
  46. Vartoukian S. R., Palmer R. M., Wade W. G.. ( 2007;). The division “Synergistes”. . Anaerobe 13:, 99–106. [CrossRef][PubMed]
    [Google Scholar]
  47. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D.. ( 1996;). Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. . Appl Environ Microbiol 62:, 1623–1629.[PubMed]
    [Google Scholar]
  48. Winter J., Braun E., Zabel H.-P.. ( 1987;). Acetomicrobium faecalis sp. nov., a strictly anaerobic bacterium from sewage sludge, producing ethanol from pentoses. . Syst Appl Microbiol 9:, 71–76. [CrossRef]
    [Google Scholar]
  49. Wu J.-H., Liu W.-T., Tseng I. C., Cheng S.-S.. ( 2001;). Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. . Microbiology 147:, 373–382.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024349-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024349-0
Loading

Data & Media loading...

Supplementary material 

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error