1887

Abstract

A novel anaerobic, moderately thermophilic, NaCl-requiring fermentative bacterium, strain OS1, was isolated from oil production water collected from Alaska, USA. Cells were Gram-negative, non-motile, non-spore-forming rods (1.7–2.7 × 0.4–0.5 µm). The G+C content of the genomic DNA of strain OS1 was 46.6 mol%. The optimum temperature, pH and NaCl concentration for growth of strain OS1 were 55 °C, pH 7 and 10 g l, respectively. The bacterium fermented -fructose, -glucose, maltose, -mannose, α-ketoglutarate, -glutamate, malonate, pyruvate, -tartrate, -asparagine, Casamino acids, -cysteine, -histidine, -leucine, -phenylalanine, -serine, -threonine, -valine, inositol, inulin, tryptone and yeast extract. When grown on -glucose, 3.86 mol hydrogen and 1.4 mol acetate were produced per mol substrate. Thiosulfate, sulfur and -cystine were reduced to sulfide, and crotonate was reduced to butyrate with glucose as the electron donor. 16S rRNA gene sequence analysis indicated that strain OS1 was related to (99.7 % similarity to the type strain), a member of the phylum . DNA–DNA hybridization between strain OS1 and DSM 13490 yielded 68 % relatedness. Unlike , strain OS1 fermented malonate, maltose, tryptone, -leucine and -phenylalanine, but not citrate, fumarate, lactate, -malate, glycerol, pectin or starch. The major cellular fatty acid of strain OS1 was iso-C (91 % of the total). Strain OS1 also contained iso-C 3-OH (3 %), which was absent from , and iso-C (2 %), which was absent from . On the basis of these results, strain OS1 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is OS1 ( = DSM 22491  = ATCC BAA-1850). An emended description of the genus is also given.

Funding
This study was supported by the:
  • US Department of Energy (Award DE-FG02-08ER64689)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024349-0
2012-04-01
2021-05-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/62/4/832.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024349-0&mimeType=html&fmt=ahah

References

  1. Allen T. D., Kraus P. F., Lawson P. A., Drake G. R., Balkwill D. L., Tanner R. S. 2008; Desulfovibrio carbinoliphilus sp. nov., a benzyl alcohol-oxidizing, sulfate-reducing bacterium isolated from a gas condensate-contaminated aquifer. Int J Syst Evol Microbiol 58:1313–1317 [CrossRef][PubMed]
    [Google Scholar]
  2. Angenent L. T., Karim K., Al-Dahhan M. H., Wrenn B. A., Domíguez-Espinosa R. 2004; Production of bioenergy and biochemicals from industrial and agricultural wastewater. Trends Biotechnol 22:477–485 [CrossRef][PubMed]
    [Google Scholar]
  3. Balch W. E., Wolfe R. S. 1976; New approach to the cultivation of methanogenic bacteria: 2-mercaptoethanesulfonic acid (HS-CoM)-dependent growth of Methanobacterium ruminantium in a pressurized atmosphere. Appl Environ Microbiol 32:781–791[PubMed]
    [Google Scholar]
  4. Davila-Vazquez G., Arriaga S., Alatriste-Mondragón F., de León-Rodríguez A., Rosales-Colunga L., Razo-Flores E. 2008; Fermentative biohydrogen production: trends and perspectives. Rev Environ Sci Biotechnol 7:27–45 [CrossRef]
    [Google Scholar]
  5. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [CrossRef][PubMed]
    [Google Scholar]
  6. Duncan K. E., Gieg L. M., Parisi V. A., Tanner R. S., Tringe S. G., Bristow J., Suflita J. M. 2009; Biocorrosive thermophilic microbial communities in Alaskan North Slope oil facilities. Environ Sci Technol 43:7977–7984 [CrossRef][PubMed]
    [Google Scholar]
  7. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef][PubMed]
    [Google Scholar]
  8. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [CrossRef]
    [Google Scholar]
  9. Gieg L. M., Davidova I. A., Duncan K. E., Suflita J. M. 2010; Methanogenesis, sulfate reduction and crude oil biodegradation in hot Alaskan oilfields. Environ Microbiol 12:3074–3086 [CrossRef][PubMed]
    [Google Scholar]
  10. Gihring T. M., Moser D. P., Lin L.-H., Davidson M., Onstott T. C., Morgan L., Milleson M., Kieft T. L., Trimarco E. other authors 2006; The distribution of microbial taxa in the subsurface water of the Kalahari Shield, South Africa. Geomicrobiol J 23:415–430 [CrossRef]
    [Google Scholar]
  11. Godon J.-J., Morinière J., Moletta M., Gaillac M., Bru V., Delgènes J.-P. 2005; Rarity associated with specific ecological niches in the bacterial world: the ‘Synergistes’ example. Environ Microbiol 7:213–224 [CrossRef][PubMed]
    [Google Scholar]
  12. Han S.-K., Shin H.-S. 2004; Biohydrogen production by anaerobic fermentation of food waste. Int J Hydrogen Energy 29:569–577 [CrossRef]
    [Google Scholar]
  13. Hugenholtz P., Hooper S. D., Kyrpides N. C. 2009; Focus: Synergistetes . Environ Microbiol 11:1327–1329 [CrossRef][PubMed]
    [Google Scholar]
  14. Hungate R. E. 1969; A roll tube method for cultivation of strict anaerobes. Methods Microbiol 3B:117–132 [CrossRef]
    [Google Scholar]
  15. Huß V. A. R., Festl H., Schleifer K. H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  16. Jahnke K. D. 1992; basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  17. Johnson J. L. 1994; Similarity analysis of DNAs. In Methods for General and Molecular Microbiology pp. 655–682 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  18. Jumas-Bilak E., Roudière L., Marchandin H. 2009; Description of ‘Synergistetes’ phyl. nov. and emended description of the phylum ‘Deferribacteres’ and of the family Syntrophomonadaceae, phylum ‘Firmicutes’. Int J Syst Evol Microbiol 59:1028–1035 [CrossRef][PubMed]
    [Google Scholar]
  19. Kapdan I. K., Kargi F. 2006; Biol-hydrogen production from waste materials. Enzyme Microb Technol 38:569–582 [CrossRef]
    [Google Scholar]
  20. Kaster K. M., Bonaunet K., Berland H., Kjeilen-Eilertsen G., Brakstad O. G. 2009; Characterisation of culture-independent and -dependent microbial communities in a high-temperature offshore chalk petroleum reservoir. Antonie van Leeuwenhoek 96:423–439 [CrossRef][PubMed]
    [Google Scholar]
  21. Kengen S. W. M., Goorissen H. P., Verhaart M., Stams A. J. M., van Niel E. W. J., Claassen P. A. M. 2009; Biological hydrogen production by anaerobic microoganisms. In Biofuels pp. 197–221 Edited by Soetaert W., Vandamme E. J. Chichester: Wiley; [CrossRef]
    [Google Scholar]
  22. Krakat N., Schmidt S., Scherer P. 2011; Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage. Bioresour Technol 102:5692–5701 [CrossRef][PubMed]
    [Google Scholar]
  23. LaPara T. M., Nakatsu C. H., Pantea L., Alleman J. E. 2000; Phylogenetic analysis of bacterial communities in mesophilic and thermophilic bioreactors treating pharmaceutical wastewater. Appl Environ Microbiol 66:3951–3959 [CrossRef][PubMed]
    [Google Scholar]
  24. Lee H.-S., Salerno M. B., Rittmann B. E. 2008; Thermodynamic evaluation on H2 production in glucose fermentation. Environ Sci Technol 42:2401–2407 [CrossRef][PubMed]
    [Google Scholar]
  25. Li C., Fang H. 2007; Fermentative hydrogen production from wastewater and solid wastes by mixed cultures. Crit Rev Environ Sci Technol 37:1–39 [CrossRef]
    [Google Scholar]
  26. Li T., Mazéas L., Sghir A., Leblon G., Bouchez T. 2009; Insights into networks of functional microbes catalysing methanization of cellulose under mesophilic conditions. Environ Microbiol 11:889–904 [CrossRef][PubMed]
    [Google Scholar]
  27. Ludwig W., Strunk O., Westram R., Richter L., Meier H., Yadhukumar, Buchner A., Lai T., Steppi S. other authors 2004; arb: a software environment for sequence data. Nucleic Acids Res 32:1363–1371 [CrossRef][PubMed]
    [Google Scholar]
  28. Maune M. W., Tanner R. S. 2008; Production of hydrogen from glucose or raw sewage by novel isolates of Anaerobaculum . In Abstracts of the 108th General Meeting of the American Society for Microbiology, 1 5 June 2008, Boston, MA, USA, abstract I-029 Washington, DC: American Society for Microbiology;
    [Google Scholar]
  29. Menes R. J., Muxí L. 2002; Anaerobaculum mobile sp. nov., a novel anaerobic, moderately thermophilic, peptide-fermenting bacterium that uses crotonate as an electron acceptor, and emended description of the genus Anaerobaculum . Int J Syst Evol Microbiol 52:157–164[PubMed]
    [Google Scholar]
  30. Mesbah M., Premachandran U., Whitman B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  31. Munson M. A., Banerjee A., Watson T. F., Wade W. G. 2004; Molecular analysis of the microflora associated with dental caries. J Clin Microbiol 42:3023–3029 [CrossRef][PubMed]
    [Google Scholar]
  32. Nandi R., Sengupta S. 1998; Microbial production of hydrogen: an overview. Crit Rev Microbiol 24:61–84 [CrossRef][PubMed]
    [Google Scholar]
  33. Ohkuma M., Kudo T. 1996; Phylogenetic diversity of the intestinal bacterial community in the termite Reticulitermes speratus . Appl Environ Microbiol 62:461–468[PubMed]
    [Google Scholar]
  34. Olsen G. J., Matsuda H., Hagstrom R., Overbeek R. 1994; fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. Comput Appl Biosci 10:41–48[PubMed]
    [Google Scholar]
  35. Orphan V. J., Taylor L. T., Hafenbradl D., Delong E. F. 2000; Culture-dependent and culture-independent characterization of microbial assemblages associated with high-temperature petroleum reservoirs. Appl Environ Microbiol 66:700–711 [CrossRef][PubMed]
    [Google Scholar]
  36. Rees G. N., Patel B. K., Grassia G. S., Sheehy A. J. 1997; Anaerobaculum thermoterrenum gen. nov., sp. nov., a novel, thermophilic bacterium which ferments citrate. Int J Syst Bacteriol 47:150–154 [CrossRef][PubMed]
    [Google Scholar]
  37. Sasaki K., Haruta S., Tatara M., Yamazawa A., Ueno Y., Ishii M., Igarashi Y. 2006; Microbial community in methanogenic packed-bed reactor successfully operating at short hydraulic retention time. J Biosci Bioeng 101:271–273 [CrossRef][PubMed]
    [Google Scholar]
  38. Sasaki K., Haruta S., Ueno Y., Ishii M., Igarashi Y. 2007; Microbial population in the biomass adhering to supporting material in a packed-bed reactor degrading organic solid waste. Appl Microbiol Biotechnol 75:941–952 [CrossRef][PubMed]
    [Google Scholar]
  39. Schröder C., Selig M., Schönheit P. 1994; Glucose fermentation to acetate, CO2 and H2 in the anaerobic hyperthermophilic eubacterium Thermotoga maritima: involvement of the Embden-Meyerhof pathway. Arch Microbiol 161:460–470
    [Google Scholar]
  40. Stackebrandt E., Ebers J. 2006; Taxonomic parameters revisited: tarnished gold standards. Microbiol Today 33:152–155
    [Google Scholar]
  41. Tanner R. S. 2007; Cultivation of bacteria and fungi. In Manual of Environmental Microbiology, 3rd edn. pp. 69–78 Edited by Hurst C. J., Crawford R. L., Mills A. L., Garland J. L., Stetzenbach L. D., Lipson D. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  42. Thauer R. K., Jungermann K., Decker K. 1977; Energy conservation in chemotrophic anaerobic bacteria. Bacteriol Rev 41:100–180[PubMed]
    [Google Scholar]
  43. US Department of Energy 2007 Hydrogen, Fuel Cells, and Infrastructure Technologies Program: Multi-year Research, Development and Demonstration Plan Washington, DC: US Department of Energy;
    [Google Scholar]
  44. van der Kraan G. M., Bruining J., Lomans B. P., van Loosdrecht M. C. M., Muyzer G. 2010; Microbial diversity of an oil-water processing site and its associated oil field: the possible role of microorganisms as information carriers from oil-associated environments. FEMS Microbiol Ecol 71:428–443 [CrossRef][PubMed]
    [Google Scholar]
  45. van Niel E. W. J., Budde M. A. W., de Haas G. G., van der Wal F. J., Claassen P. A. M., Stams A. J. M. 2002; Distinctive properties of high hydrogen producing extreme thermophiles, Caldicellulosiruptor saccharolyticus and Thermotoga elfii . Int J Hydrogen Energy 27:1391–1398 [CrossRef]
    [Google Scholar]
  46. Vartoukian S. R., Palmer R. M., Wade W. G. 2007; The division “Synergistes”. Anaerobe 13:99–106 [CrossRef][PubMed]
    [Google Scholar]
  47. Voordouw G., Armstrong S. M., Reimer M. F., Fouts B., Telang A. J., Shen Y., Gevertz D. 1996; Characterization of 16S rRNA genes from oil field microbial communities indicates the presence of a variety of sulfate-reducing, fermentative, and sulfide-oxidizing bacteria. Appl Environ Microbiol 62:1623–1629[PubMed]
    [Google Scholar]
  48. Winter J., Braun E., Zabel H.-P. 1987; Acetomicrobium faecalis sp. nov., a strictly anaerobic bacterium from sewage sludge, producing ethanol from pentoses. Syst Appl Microbiol 9:71–76 [CrossRef]
    [Google Scholar]
  49. Wu J.-H., Liu W.-T., Tseng I. C., Cheng S.-S. 2001; Characterization of microbial consortia in a terephthalate-degrading anaerobic granular sludge system. Microbiology 147:373–382[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024349-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024349-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error