1887

Abstract

A Gram-negative, heterotrophic, marine bacterium, designated strain SW-11, was isolated from the reef-building coral in Kenting, Taiwan. Cells were rods and were motile by a single polar flagellum. The strain grew at 10–45 °C (optimum, 30–35 °C), at pH 7.0–8.0 (optimum, pH 7.5) and with 2.0–4.0 % NaCl (optimum, 2.5–3.0 %). The polar lipids comprised phosphatidylethanolamine, phosphatidylglycerol, phosphatidylserine, diphosphatidylglycerol and four unknown phospholipids. Isoprenoid quinones consisted of ubiquinone 9 (78.8 %) and ubiquinone 8 (21.1 %). Major cellular fatty acids were summed feature 3 (Cω7 and/or Cω6; 22.3 %), Cω8 (13.4 %), summed feature 8 (Cω6 and/or Cω7; 13.1 %), C (10.3 %) and anteiso-Cω9 (10.0 %). The DNA GC content was 51.6 mol%. 16S rRNA gene sequence analysis indicated that strain SW-11 belongs to the class and is a member of the order . Strain SW-11 shared 93.2 % 16S rRNA gene sequence similarity with T7902 and 92.1 % with 2-40, and can be further distinguished from these two related strains by distinct patterns of fatty acid content and differences in the polar lipid profile, the ability to utilize different compounds as carbon sources, the ability to degrade various compounds and differences in enzyme activities. The phylogenetic data and those from physiological, morphological and chemotaxonomic characterizations indicate that strain SW-11 represents a novel species and genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is SW-11 ( = BCRC 17935  = LMG 25246).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024190-0
2011-08-01
2019-12-13
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1887.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024190-0&mimeType=html&fmt=ahah

References

  1. Bowman J. P. . ( 2000; ). Description of Cellulophaga algicola sp. nov., isolated from the surfaces of Antarctic algae, and reclassification of Cytophaga uliginosa (ZoBell and Upham 1944) Reichenbach 1989 as Cellulophaga uliginosa comb. nov.. Int J Syst Evol Microbiol 50:, 1861–1868.[PubMed]
    [Google Scholar]
  2. Brown B. E. , Bythell J. C. . ( 2005; ). Perspectives on mucus secretion in reef corals. . Mar Ecol Prog Ser 296:, 291–309. [CrossRef]
    [Google Scholar]
  3. Chen W. M. , Laevens S. , Lee T. M. , Coenye T. , De Vos P. , Mergeay M. , Vandamme P. . ( 2001; ). Ralstonia taiwanensis sp. nov., isolated from root nodules of Mimosa species and sputum of a cystic fibrosis patient. . Int J Syst Evol Microbiol 51:, 1729–1735. [CrossRef].[PubMed]
    [Google Scholar]
  4. Chiou S. F. , Kuo J. , Wong T. Y. , Fan T. Y. , Tew K. S. , Liu J. K. . ( 2010; ). Analysis of the coral associated bacterial community structures in healthy and diseased corals from off-shore of southern Taiwan. . J Environ Sci Health B 45:, 408–415. [CrossRef].[PubMed]
    [Google Scholar]
  5. Choi D. H. , Kim Y.-G. , Hwang C. Y. , Yi H. , Chun J. , Cho B. C. . ( 2006; ). Tenacibaculum litoreum sp. nov., isolated from tidal flat sediment. . Int J Syst Evol Microbiol 56:, 635–640. [CrossRef].[PubMed]
    [Google Scholar]
  6. Collins M. D. . ( 1985; ). Analysis of isoprenoid quinones. . Methods Microbiol 18:, 329–366. [CrossRef]
    [Google Scholar]
  7. Distel D. L. , Morrill W. , MacLaren-Toussaint N. , Franks D. , Waterbury J. . ( 2002; ). Teredinibacter turnerae gen. nov., sp. nov., a dinitrogen-fixing, cellulolytic, endosymbiotic γ-proteobacterium isolated from the gills of wood-boring molluscs (Bivalvia: Teredinidae). . Int J Syst Evol Microbiol 52:, 2261–2269. [CrossRef].[PubMed]
    [Google Scholar]
  8. Ekborg N. A. , Gonzalez J. M. , Howard M. B. , Taylor L. E. , Hutcheson S. W. , Weiner R. M. . ( 2005; ). Saccharophagus degradans gen. nov., sp. nov., a versatile marine degrader of complex polysaccharides. . Int J Syst Evol Microbiol 55:, 1545–1549. [CrossRef].[PubMed]
    [Google Scholar]
  9. Felsenstein J. . ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. . J Mol Evol 17:, 368–376. [CrossRef].[PubMed]
    [Google Scholar]
  10. Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  11. Hall T. A. . ( 1999; ). BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. . Nucleic Acids Symp Ser 41:, 95–98.
    [Google Scholar]
  12. Hong M. J. , Yu Y. T. , Chen C. A. , Chiang P. W. , Tang S. L. . ( 2009; ). Influence of species specificity and other factors on bacteria associated with the coral Stylophora pistillata in Taiwan. . Appl Environ Microbiol 75:, 7797–7806. [CrossRef].[PubMed]
    [Google Scholar]
  13. Hosoya S. , Adachi K. , Kasai H. . ( 2009; ). Thalassomonas actiniarum sp. nov. and Thalassomonas haliotis sp. nov., isolated from marine animals. . Int J Syst Evol Microbiol 59:, 686–690. [CrossRef].[PubMed]
    [Google Scholar]
  14. Hsu S. C. , Lockwood J. L. . ( 1975; ). Powdered chitin agar as a selective medium for enumeration of actinomycetes in water and soil. . Appl Microbiol 29:, 422–426.[PubMed]
    [Google Scholar]
  15. Kelly S. K. , Coyne V. E. , Sledjeski D. D. , Fuqua W. C. , Weiner R. M. . ( 1990; ). Identification of a tyrosinase from a periphytic marine bacterium. . FEMS Microbiol Lett 67:, 275–279. [CrossRef]
    [Google Scholar]
  16. Kimura M. . ( 1983; ). The Neutral Theory of Molecular Evolution. Cambridge:: Cambridge University Press;.[CrossRef]
    [Google Scholar]
  17. Kluge A. G. , Farris F. S. . ( 1969; ). Quantitative phyletics and the evolution of anurans. . Syst Zool 18:, 1–12. [CrossRef]
    [Google Scholar]
  18. Kumar S. , Tamura K. , Nei M. . ( 2004; ). mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. . Brief Bioinform 5:, 150–163. [CrossRef].[PubMed]
    [Google Scholar]
  19. Kvennefors E. C. E. , Sampayo E. , Ridgway T. , Barnes A. C. , Hoegh-Guldberg O. . ( 2010; ). Bacterial communities of two ubiquitous Great Barrier Reef corals reveals both site- and species-specificity of common bacterial associates. . PLoS ONE 5:, e10401. [CrossRef].[PubMed]
    [Google Scholar]
  20. Lyman J. , Fleming R. H. . ( 1940; ). Composition of sea water. . J Mar Res 3:, 134–146.
    [Google Scholar]
  21. Mesbah M. , Premachandran U. , Whitman W. B. . ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. . Int J Syst Bacteriol 39:, 159–167. [CrossRef]
    [Google Scholar]
  22. Miller P. H. , Wiggs L. S. , Miller J. M. . ( 1995; ). Evaluation of AnaeroGen system for growth of anaerobic bacteria. . J Clin Microbiol 33:, 2388–2391.[PubMed]
    [Google Scholar]
  23. Minnikin D. E. , O’Donnell A. G. , Goodfellow M. , Alderson G. , Athalye M. , Schaal K. , Parlett J. H. . ( 1984; ). An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. . J Microbiol Methods 2:, 233–241. [CrossRef]
    [Google Scholar]
  24. Monreal J. , Reese E. T. . ( 1969; ). The chitinase of Serratia marcescens . . Can J Microbiol 15:, 689–696. [CrossRef].[PubMed]
    [Google Scholar]
  25. Nokhal T.-H. , Schlegel H. G. . ( 1983; ). Taxonomic study of Paracoccus denitrificans . . Int J Syst Bacteriol 33:, 26–37. [CrossRef]
    [Google Scholar]
  26. Powers E. M. . ( 1995; ). Efficacy of the Ryu nonstaining KOH technique for rapidly determining gram reactions of food-borne and waterborne bacteria and yeasts. . Appl Environ Microbiol 61:, 3756–3758.[PubMed]
    [Google Scholar]
  27. Rosenberg E. , Koren O. , Reshef L. , Efrony R. , Zilber-Rosenberg I. . ( 2007; ). The role of microorganisms in coral health, disease and evolution. . Nat Rev Microbiol 5:, 355–362. [CrossRef].[PubMed]
    [Google Scholar]
  28. Rypien K. L. , Ward J. R. , Azam F. . ( 2010; ). Antagonistic interactions among coral-associated bacteria. . Environ Microbiol 12:, 28–39. [CrossRef].[PubMed]
    [Google Scholar]
  29. Saitou N. , Nei M. . ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. . Mol Biol Evol 4:, 406–425.[PubMed]
    [Google Scholar]
  30. Sampayo E. M. , Ridgway T. , Bongaerts P. , Hoegh-Guldberg O. . ( 2008; ). Bleaching susceptibility and mortality of corals are determined by fine-scale differences in symbiont type. . Proc Natl Acad Sci U S A 105:, 10444–10449. [CrossRef].[PubMed]
    [Google Scholar]
  31. Sasser M. . ( 1990; ). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. . Newark, DE:: MIDI, Inc;.
  32. Smibert R. M. , Krieg N. R. . ( 1994; ). Phenotypic characterization. . In Methods for General and Molecular Bacteriology, pp. 607–654. Edited by Gerhardt P. , Murray R. G. E. , Wood W. A. , Krieg N. R. . . Washington, DC:: American Society for Microbiology;.
    [Google Scholar]
  33. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  34. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef].[PubMed]
    [Google Scholar]
  35. Ventosa A. , Marquez M. C. , Kocur M. , Tindall B. J. . ( 1993; ). Comparative study of “Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus . . Int J Syst Bacteriol 43:, 245–248. [CrossRef].[PubMed]
    [Google Scholar]
  36. Waterbury J. B. , Calloway C. B. , Turner R. D. . ( 1983; ). A cellulolytic nitrogen-fixing bacterium cultured from the gland of Deshayes in shipworms (Bivalvia: Teredinidae). . Science 221:, 1401–1403. [CrossRef].[PubMed]
    [Google Scholar]
  37. Yarza P. , Richter M. , Peplies J. , Euzéby J. , Amann R. , Schleifer K. H. , Ludwig W. , Glöckner F. O. , Rosselló-Móra R. . ( 2008; ). The All-Species Living Tree project: a 16S rRNA-based phylogenetic tree of all sequenced type strains. . Syst Appl Microbiol 31:, 241–250. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024190-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024190-0
Loading

Data & Media loading...

Supplements

Maximum-likelihood (Fig. S1) and maximum-parsimony (Fig. S2) trees based on 16S rRNA gene sequences showing the phylogenetic relationships between strain SW-11 and some representatives of the class . [PDF of Supplementary Figs S1 and S2](46 KB)

PDF

Electron micrographs of cells of gen. nov., sp. nov. SW-11 . Cells were grown in MB at 30 °C for 18 h. Bars, 1 µm.

IMAGE

Two-dimensional TLC of polar lipids of SW-11 (A), ATCC 39867 (B) and DSM 17024 (C). DPG, Diphosphatidylglycerol; PE, phosphatidylethanolamine; PG, phosphatidylglycerol; PS, phosphatidylserine; GL, unknown glycolipid; AL1–AL3, unknown aminolipids; PL1–PL9, unknown phospholipids. TLC plates were sprayed with molybdatophosphoric acid to detect total polar lipids.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error