1887

Abstract

To allow classification of bacteria previously reported as the SP group and the Stewart–Letscher group, 35 isolates from rodents (21), rabbits (eight), a dog and humans (five) were phenotypically and genotypically characterized. Comparison of partial sequences showed that 34 of the isolates were closely related, demonstrating at least 97.4 % similarity. 16S rRNA gene sequence comparison of 20 selected isolates confirmed the monophyly of the SP group and revealed 98.5 %–100 % similarity between isolates. A search using the 16S rRNA gene sequences showed that the highest similarity outside the SP group was 95.5 % to an unclassified rat isolate. The single strain, P625, representing the Stewart–Letscher group showed the highest 16S rRNA gene similarity (94.9–95.5 %) to members of the SP group. gene sequence analysis of 11 representative strains resulted in similarities of 97–100 % among the SP group strains, which showed 80 % sequence similarity to the Stewart–Letscher group strain. Sequence similarity values based on the gene, indicative for whole genome similarity, showed the SP group being clearly separated from established genera, whereas the Stewart–Letscher group strain was associated with the SP group. A new genus, gen. nov., with only one species, sp. nov., is proposed to include all members of the SP group. The new genus can be separated from existing genera of the family by at least three phenotypic characters. The most characteristic properties of the new genus are that haemolysis is not observed on bovine blood agar, positive reactions are observed in the porphyrin test, acid is produced from (+)--arabinose, (+)--xylose, dulcitol, (+)--galactose, (+)--mannose, maltose and melibiose, and negative reactions are observed for symbiotic growth, urease, ornithine decarboxylase and indole. Previous publications have documented that both ubiquinones and demethylmenaquinone were produced by the proposed type strain of the new genus, Michel A/76, and that the major polyamine of representative strains (type strain not included) of the genus is 1,3-diaminopropane, spermidine is present in moderate amounts and putrescine and spermine are detectable only in minor amounts. The major fatty acids of strain Michel A/76 are C, C, Cω7 and summed feature C 3-OH/iso-C I. This fatty acid profile is typical for members of the family . The G+C content of DNA of strain Michel A/76 was estimated to be 52.5 mol% in a previous investigation. The type strain is P709 ( = Michel A/76  = CCUG 28028  = CIP 110147  = CCM 7802).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024174-0
2011-08-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/8/1829.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024174-0&mimeType=html&fmt=ahah

References

  1. Aldová E. , Frederiksen W. , Paucková V. , Absolonová V. , Vladík P. , Lávicková M. , Hausner O. , Vokoun P. . ( 1992; ). Aerogenic pasteurellas and Pasteurella-like organisms isolated in Czechoslovakia. . Zentralbl Bakteriol 277:, 139–143.[PubMed] [CrossRef]
    [Google Scholar]
  2. Altschul S. F. , Madden T. L. , Schäffer A. A. , Zhang J. , Zhang Z. , Miller W. , Lipman D. J. . ( 1997; ). Gapped blast and psi-blast: a new generation of protein database search programs. . Nucleic Acids Res 25:, 3389–3402. [CrossRef].[PubMed]
    [Google Scholar]
  3. Angen Ø. , Ahrens P. , Kuhnert P. , Christensen H. , Mutters R. . ( 2003; ). Proposal of Histophilus somni gen. nov., sp. nov. for the three species incertae sedisHaemophilus somnus’, ‘Haemophilus agni’ and ‘Histophilus ovis’. . Int J Syst Evol Microbiol 53:, 1449–1456. [CrossRef].[PubMed]
    [Google Scholar]
  4. Angen Ø. , Mutters R. , Caugant D. A. , Olsen J. E. , Bisgaard M. . ( 1999; ). Taxonomic relationships of the [Pasteurella] haemolytica complex as evaluated by DNA-DNA hybridizations and 16S rRNA sequencing with proposal of Mannheimia haemolytica gen. nov., comb. nov., Mannheimia granulomatis comb. nov., Mannheimia glucosida sp. nov., Mannheimia ruminalis sp. nov. and Mannheimia varigena sp. nov. . Int J Syst Bacteriol 49:, 67–86.[CrossRef]
    [Google Scholar]
  5. Benson D. A. , Karsch-Mizrachi I. , Lipman D. J. , Ostell J. , Sayers E. W. . ( 2010; ). GenBank. . Nucleic Acids Res 38: Database issue D46–D51. [CrossRef].[PubMed]
    [Google Scholar]
  6. Bisgaard M. , Houghton S. B. , Mutters R. , Stenzel A. . ( 1991; ). Reclassification of German, British and Dutch isolates of so-called Pasteurella multocida obtained from pneumonic calf lungs. . Vet Microbiol 26:, 115–124. [CrossRef].[PubMed]
    [Google Scholar]
  7. Bisgaard M. , Christensen J. P. , Bojesen A. M. , Christensen H. . ( 2007; ). Avibacterium endocarditidis sp. nov., isolated from valvular endocarditis in chickens. . Int J Syst Evol Microbiol 57:, 1729–1734. [CrossRef].[PubMed]
    [Google Scholar]
  8. Bisgaard M. , Korczak B. M. , Busse H.-J. , Kuhnert P. , Bojesen A. M. , Christensen H. . ( 2009; ). Classification of the taxon 2 and taxon 3 complex of Bisgaard within Gallibacterium and description of Gallibacterium melopsittaci sp. nov., Gallibacterium trehalosifermentans sp. nov. and Gallibacterium salpingitidis sp. nov.. Int J Syst Evol Microbiol 59:, 735–744. [CrossRef].[PubMed]
    [Google Scholar]
  9. Blackall P. J. , Christensen H. , Beckenham T. , Blackall L. L. , Bisgaard M. . ( 2005; ). Reclassification of Pasteurella gallinarum, [Haemophilus] paragallinarum, Pasteurella avium and Pasteurella volantium as Avibacterium gallinarum gen. nov., comb. nov., Avibacterium paragallinarum comb. nov., Avibacterium avium comb. nov. and Avibacterium volantium comb. nov.. Int J Syst Evol Microbiol 55:, 353–362. [CrossRef].[PubMed]
    [Google Scholar]
  10. Blackall P. J. , Bojesen A. M. , Christensen H. , Bisgaard M. . ( 2007; ). Reclassification of [Pasteurella] trehalosi as Bibersteinia trehalosi gen. nov., comb. nov. . Int J Syst Evol Microbiol 57:, 666–674.[CrossRef]
    [Google Scholar]
  11. Boot R. , Bisgaard M. . ( 1995; ). Reclassification of 30 Pasteurellaceae strains isolated from rodents. . Lab Anim 29:, 314–319. [CrossRef].[PubMed]
    [Google Scholar]
  12. Boot R. , Thuis H. , Bakker R. H. G. , Veenema J. L. . ( 1995; ). An enzyme-linked immunosorbent assay (ELISA) for monitoring antibodies to SP group Pasteurellaceae in guineapigs. . Lab Anim 29:, 59–65. [CrossRef].[PubMed]
    [Google Scholar]
  13. Busse H.-J. , Bunka S. , Hensel A. , Lubitz W. . ( 1997; ). Discrimination of members of the family Pasteurellaceae based on polyamine patterns. . Int J Syst Bacteriol 47:, 698–708. [CrossRef]
    [Google Scholar]
  14. Christensen H. , Bisgaard M. . ( 2004; ). Revised definition of Actinobacillus sensu stricto isolated from animals. A review with special emphasis on diagnosis. . Vet Microbiol 99:, 13–30. [CrossRef].[PubMed]
    [Google Scholar]
  15. Christensen H. , Bisgaard M. . ( 2006; ). The genus Pasteurella . . In The Prokaryotes, , 3rd edn., vol. 6, pp. 1062–1090. Edited by Dworkin M. , Falkow S. , Rosenberg E. , Schleifer K. H. , Stackebrandt E. . . New York:: Springer;. [CrossRef].
    [Google Scholar]
  16. Christensen H. , Bisgaard M. . ( 2008; ). Taxonomy and biodiversity of members of Pasteurellaceae . . In Pasteurellaceae: Biology, Genomics and Molecular Aspects, pp. 1–26. Edited by Kuhnert P. , Christensen H. . . Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  17. Christensen H. , Bisgaard M. . ( 2010; ). Molecular classification and its impact on diagnostics and understanding the phylogeny and epidemiology of selected members of Pasteurellaceae of veterinary importance. . Berl Munch Tierarztl Wochenschr 123:, 20–30.[PubMed]
    [Google Scholar]
  18. Christensen H. , Bisgaard M. , Angen Ø. , Olsen J. E. . ( 2002; ). Final classification of Bisgaard taxon 9 as Actinobacillus arthritidis sp. nov. and recognition of a novel genomospecies for equine strains of Actinobacillus lignieresii . . Int J Syst Evol Microbiol 52:, 1239–1246. [CrossRef].[PubMed]
    [Google Scholar]
  19. Christensen H. , Bisgaard M. , Aalbæk B. , Olsen J. E. . ( 2004; ). Reclassification of Bisgaard taxon 33, with proposal of Volucribacter psittacicida gen. nov., sp. nov. and Volucribacter amazonae sp. nov. as new members of the Pasteurellaceae . . Int J Syst Evol Microbiol 54:, 813–818. [CrossRef] [PubMed]
    [Google Scholar]
  20. Christensen H. , Kuhnert P. , Busse H.-J. , Frederiksen W. C. , Bisgaard M. . ( 2007; ). Proposed minimal standards for the description of genera, species and subspecies of the Pasteurellaceae . . Int J Syst Evol Microbiol 57:, 166–178. [CrossRef].[PubMed]
    [Google Scholar]
  21. De Ley J. , Mannheim W. , Mutters R. , Piechulla K. , Tytgat R. , Segers P. , Bisgaard M. , Frederiksen W. , Hinz K.-H. , Vanhoucke M. . ( 1990; ). Inter- and intrafamilial similarities of rRNA cistrons of the Pasteurellaceae . . Int J Syst Bacteriol 40:, 126–137. [CrossRef].[PubMed]
    [Google Scholar]
  22. Felsenstein, J. (1995). phylip (phylogeny inference package) version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  23. Foster G. , Ross H. M. , Malnick H. , Willems A. , Hutson R. A. , Reid R. J. , Collins M. D. . ( 2000; ). Phocoenobacter uteri gen. nov., sp. nov., a new member of the family Pasteurellaceae Pohl (1979) 1981 isolated from a harbour porpoise (Phocoena phocoena). . Int J Syst Evol Microbiol 50:, 135–139.[CrossRef]
    [Google Scholar]
  24. Frederiksen W. . ( 1981; ). Gas producing species within Pasteurella and Actinobacillus . . In Haemophilus, Pasteurella and Actinobacillus, pp. 185–196. Edited by Kilian M. , Frederiksen W. , Biberstein E. L. . . London:: Academic Press;.
    [Google Scholar]
  25. Gregersen R. H. , Neubauer C. , Christensen H. , Bojesen A. M. , Hess M. , Bisgaard M. . ( 2009; ). Comparative studies on [Pasteurella] testudinis and [P.] testudinis-like bacteria and proposal of Chelonobacter oris gen. nov., sp. nov. as a new member of the Pasteurellaceae . . Int J Syst Evol Microbiol 59:, 1583–1588.[PubMed] [CrossRef]
    [Google Scholar]
  26. Jukes T. H. , Cantor C. R. . ( 1969; ). Evolution of protein molecules. . In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by Munro H. N. . . New York:: Academic Press;.
    [Google Scholar]
  27. Korczak B. M. , Kuhnert P. . ( 2008; ). Phylogeny of Pasteurellaceae . . In Pasteurellaceae: Biology, Genomics and Molecular Aspects, pp. 27–52. Edited by Kuhnert P. , Christensen H. . . Wymondham, UK:: Caister Academic Press;.
    [Google Scholar]
  28. Korczak B. , Christensen H. , Emler S. , Frey J. , Kuhnert P. . ( 2004; ). Phylogeny of the family Pasteurellaceae based on rpoB sequences. . Int J Syst Evol Microbiol 54:, 1393–1399. [CrossRef].[PubMed]
    [Google Scholar]
  29. Kuhnert P. , Korczak B. M. . ( 2006; ). Prediction of whole-genome DNA-DNA similarity, determination of G+C content and phylogenetic analysis within the family Pasteurellaceae by multilocus sequence analysis (MLSA). . Microbiology 152:, 2537–2548. [CrossRef].[PubMed]
    [Google Scholar]
  30. Kuhnert P. , Frey J. , Lang N. P. , Mayfield L. . ( 2002; ). Phylogenetic analysis of Prevotella nigrescens, Prevotella intermedia and Porphyromonas gingivalis clinical strains reveals a clear species clustering. . Int J Syst Evol Microbiol 52:, 1391–1395. [CrossRef].[PubMed]
    [Google Scholar]
  31. Kuhnert P. , Korczak B. , Falsen E. , Straub R. , Hoops A. , Boerlin P. , Frey J. , Mutters R. . ( 2004; ). Nicoletella semolina gen. nov., sp. nov., a new member of Pasteurellaceae isolated from horses with airway disease. . J Clin Microbiol 42:, 5542–5548.[CrossRef]
    [Google Scholar]
  32. Kuhnert P. , Scholten E. , Haefner S. , Mayor D. , Frey J. . ( 2010; ). Basfia succiniciproducens gen. nov., sp. nov., a new member of the family Pasteurellaceae isolated from bovine rumen. . Int J Syst Evol Microbiol 60:, 44–50. [CrossRef].[PubMed]
    [Google Scholar]
  33. Lion C. , Conroy M. C. , Dupuy M. L. , Escande F. . ( 1995; ). Pasteurella “SP” group infection after a guinea pig bite. . Lancet 346:, 901–902. [CrossRef].[PubMed]
    [Google Scholar]
  34. Mannheim W. . ( 1981; ). Taxonomic implications of DNA relatedness and quinone patterns in Haemophilus, Pasteurella and Actinobacillus . . In Haemophilus, Pasteurella and Actinobacillus, pp. 265–280. Edited by Kilian M. , Frederiksen W. , Biberstein E. L. . . London:: Academic Press;.
    [Google Scholar]
  35. Mannheim W. , Pohl S. , Stenzel W. . ( 1978; ). [Unclassified Pasteurella-like organisms isolated from guinea pigs]. . Zentralbl Bakteriol (Orig A) 241:, 329–336 (in German).[PubMed]
    [Google Scholar]
  36. Mollet C. , Drancourt M. , Raoult D. . ( 1997; ). rpoB sequence analysis as a novel basis for bacterial identification. . Mol Microbiol 26:, 1005–1011. [CrossRef].[PubMed]
    [Google Scholar]
  37. Mutters R. , Mouahid M. , Engelhard E. , Mannheim W. . ( 1993; ). Characterization of the family Pasteurellaceae on the basis of cellular lipids and carbohydrates. . Zentralbl Bakteriol 279:, 104–113.[PubMed] [CrossRef]
    [Google Scholar]
  38. Nørskov-Lauritsen N. , Kilian M. . ( 2006; ). Reclassification of Actinobacillus actinomycetemcomitans, Haemophilus aphrophilus, Haemophilus paraphrophilus and Haemophilus segnis as Aggregatibacter actinomycetemcomitans gen. nov., comb. nov., Aggregatibacter aphrophilus comb. nov. and Aggregatibacter segnis comb. nov., and emended description of Aggregatibacter aphrophilus to include V factor-dependent and V factor-independent isolates. . Int J Syst Evol Microbiol 56:, 2135–2146. [CrossRef].[PubMed]
    [Google Scholar]
  39. Nørskov-Lauritsen N. , Bruun B. , Kilian M. . ( 2005; ). Multilocus sequence phylogenetic study of the genus Haemophilus with description of Haemophilus pittmaniae sp. nov. . Int J Syst Evol Microbiol 55:, 449–456.[CrossRef]
    [Google Scholar]
  40. Olsen I. , Møller K. . ( 2005; ). Genus Actinobacillus Brumpt 1910, 849AL . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 866–883. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  41. Olsen G. J. , Matsuda H. , Hagstrom R. , Overbeek R. . ( 1994; ). fastDNAmL: a tool for construction of phylogenetic trees of DNA sequences using maximum likelihood. . Comput Appl Biosci 10:, 41–48.[PubMed]
    [Google Scholar]
  42. Olsen I. , Dewhirst F. E. , Paster B. J. , Busse H.-J. . ( 2005; ). Family Pasteurellaceae . . In Bergey’s Manual of Systematic Bacteriology, , 2nd edn., vol. 2, pp. 851–856. Edited by Brenner D. J. , Krieg N. R. , Staley J. T. , Garrity G. M. . . New York:: Springer;.
    [Google Scholar]
  43. Osawa R. , Rainey F. A. , Fujisawa T. , Lang E. , Busse H.-J. , Walsh T. , Stackebrandt E. . ( 1995; ). Lonepinella koalarum gen. nov., sp. nov., a new tannin-protein complex degrading bacterium. . Syst Appl Microbiol 18:, 368–373.[CrossRef]
    [Google Scholar]
  44. Rice P. , Longden I. , Bleasby A. . ( 2000; ). emboss: the European molecular biology open software suite. . Trends Genet 16:, 276–277. [CrossRef].[PubMed]
    [Google Scholar]
  45. Stahel A. B. J. , Hoop R. K. , Kuhnert P. , Korczak B. M. . ( 2009; ). Phenotypic and genetic characterization of Pasteurella multocida and related isolates from rabbits in Switzerland. . J Vet Diagn Invest 21:, 793–802. [CrossRef].[PubMed]
    [Google Scholar]
  46. Stewart D. D. , Letscher R. M. . ( 1976; ). Isolation of an atypical Pasteurella-like organism from guinea pig abscesses. . Lab Anim Sci 26:, 482–485.[PubMed]
    [Google Scholar]
  47. Tamura K. , Dudley J. , Nei M. , Kumar S. . ( 2007; ). mega4: molecular evolutionary genetics analysis (mega) software version 4.0. . Mol Biol Evol 24:, 1596–1599. [CrossRef].[PubMed]
    [Google Scholar]
  48. Thompson J. D. , Gibson T. J. , Plewniak F. , Jeanmougin F. , Higgins D. G. . ( 1997; ). The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. . Nucleic Acids Res 25:, 4876–4882. [CrossRef].[PubMed]
    [Google Scholar]
  49. Ursing J. . ( 1981; ). Deoxyribonucleic acid hybridization studies of gas producing Pasteurellaceae . . In Haemophilus, Pasteurella and Actinobacillus, pp. 255–263. Edited by Kilian M. , Frederiksen W. , Biberstein E. L. . . London:: Academic Press;.
    [Google Scholar]
  50. Zeigler D. R. . ( 2003; ). Gene sequences useful for predicting relatedness of whole genomes in bacteria. . Int J Syst Evol Microbiol 53:, 1893–1900. [CrossRef].[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024174-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024174-0
Loading

Data & Media loading...

Supplements

vol. , part 8, pp. 1829 - 1836

[ PDF] (159 KB) containing:

Phylogenetic relationships between the isolates investigated and existing members of the family based on maximum-likelihood analysis of partial gene sequences.

Phylogenetic relationships between the isolates investigated and existing members of the family based on analysis of partial gene sequences.

Strains investigated

Whole-cell fatty acids

 



PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error