1887

Abstract

An anaerobic, halorespiring bacterium (strain PCE-M2=DSM 13726=ATCC BAA-583) able to reduce tetrachloroethene to -dichloroethene was isolated from an anaerobic soil polluted with chlorinated aliphatic compounds. The isolate is assigned to the genus as a novel species, sp. nov. Furthermore, on the basis of all available data, a related organism, DSM 12446, is reclassified to the genus as comb. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02417-0
2003-05-01
2019-10-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530787.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02417-0&mimeType=html&fmt=ahah

References

  1. Boschker, H. T. S., de Brouwer, J. F. C. & Cappenberg, T. E. ( 1999; ). The contribution of macrophyte-derived organic matter to microbial biomass in salt-marsh sediments: stable carbon isotope analysis of microbial biomarkers. Limnol Oceanogr 44, 309–319.[CrossRef]
    [Google Scholar]
  2. Bouwer, E. J. & McCarty, P. L. ( 1983; ). Transformations of 1- and 2-carbon halogenated aliphatic organic compounds under methanogenic conditions. Appl Environ Microbiol 45, 1286–1294.
    [Google Scholar]
  3. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  4. de Bruin, W. P., Kotterman, M. J. J., Posthumus, M. A., Schraa, G. & Zehnder, A. J. B. ( 1992; ). Complete biological reductive transformation of tetrachloroethene to ethane. Appl Environ Microbiol 58, 1996–2000.
    [Google Scholar]
  5. De Ley, J., Cattoir, H. & Reynaerts, A. ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12, 133–142.[CrossRef]
    [Google Scholar]
  6. DiStefano, T. D., Gossett, J. M. & Zinder, S. H. ( 1991; ). Reductive dechlorination of high concentrations of tetrachloroethene to ethene by an anaerobic enrichment culture in the absence of methanogenesis. Appl Environ Microbiol 57, 2287–2292.
    [Google Scholar]
  7. El Fantroussi, S., Naveau, H. & Agathos, S. N. ( 1998; ). Anaerobic dechlorinating bacteria. Biotechnol Prog 14, 167–188.[CrossRef]
    [Google Scholar]
  8. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  9. Fathepure, B. Z., Nengu, J. P. & Boyd, S. A. ( 1987; ). Anaerobic bacteria that dechlorinate perchloroethene. Appl Environ Microbiol 53, 2671–2674.
    [Google Scholar]
  10. Finster, K., Liesack, W. & Tindall, B. J. ( 1997; ). Sulfurospirillum arcachonense sp. nov., a new microaerophilic sulfur-reducing bacterium. Int J Syst Bacteriol 47, 1212–1217.[CrossRef]
    [Google Scholar]
  11. Freedman, D. L. & Gossett, J. M. ( 1989; ). Biological reductive dechlorination of tetrachloroethylene and trichloroethylene to ethylene under methanogenic conditions. Appl Environ Microbiol 55, 2144–2151.
    [Google Scholar]
  12. Gerritse, J., Renard, V., Pedro Gomes, T. M., Lawson, P. A., Collins, M. D. & Gottschal, J. C. ( 1996; ). Desulfitobacterium sp. strain PCE1, anaerobic bacterium that can grow by reductive dechlorination of tetrachloroethene or ortho-chlorinated phenols. Arch Microbiol 165, 132–140.[CrossRef]
    [Google Scholar]
  13. Gerritse, J., Drzyzga, O., Kloetstra, G., Keijmel, M., Wiersum, L. P., Hutson, R., Collins, M. D. & Gottschal, J. C. ( 1999; ). Influence of different electron donors and acceptors on dehalorespiration of tetrachloroethene by Desulfitobacterium frappieri TCE1. Appl Environ Microbiol 65, 5212–5221.
    [Google Scholar]
  14. Holliger, C., Schraa, G., Stams, A. J. M. & Zehnder, A. J. B. ( 1993; ). A highly purified enrichment culture couples the reductive dechlorination of tetrachloroethene to growth. Appl Environ Microbiol 59, 2991–2997.
    [Google Scholar]
  15. Holliger, C., Wohlfahrt, G. & Diekert, G. ( 1998; ). Reductive dechlorination in the energy metabolism of anaerobic bacteria. FEMS Microbiol Rev 22, 383–398.[CrossRef]
    [Google Scholar]
  16. Huß, V. A. R., Festl, H. & Schleifer, K. H. ( 1983; ). Studies on the spectrometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  17. Jahnke, K.-D. ( 1992; ). BASIC computer program for evaluation of spectroscopic DNA renaturation data from GILFORD System 2600 spectrometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  18. Lane, D. J. ( 1991; ). 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 115–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  19. Laverman, A. M., Switzer Blum, J., Shaefer, J. K., Philips, E. J. P., Lovley, D. R. & Oremland, R. S. ( 1995; ). Growth of strain SES-3 with arsenate and other diverse electron acceptors. Appl Environ Microbiol 61, 3556–3561.
    [Google Scholar]
  20. Maymo-Gatell, X., Chien, Y., Gossett, J. M. & Zinder, S. H. ( 1997; ). Isolation of a bacterium that reductively dechlorinates tetrachloroethene to ethene. Science 276, 1568–1571.[CrossRef]
    [Google Scholar]
  21. Maymo-Gatell, X., Anguish, T. & Zinder, S. H. ( 1999; ). Reductive dechlorination of chlorinated ethenes and 1,2-dichloroethane by “Dehalococcoides ethenogenes” 195. Appl Environ Microbiol 65, 3108–3113.
    [Google Scholar]
  22. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  23. Middeldorp, P. J. M., Van Aalst, M. A., Rijnaarts, H. H. M., Stams, F. J. M., De Kreuk, H. F., Schraa, G. & Bosma, T. N. P. ( 1998; ). Stimulation of reductive dechlorination for in situ bioremediation of a soil contaminated with chlorinated ethenes. Water Sci Technol 37 (8), 105–110.
    [Google Scholar]
  24. Middeldorp, P. J. M., Luijten, M. L. G. C., Van de Pas, B. A., Van Eekert, M. H. A., Kengen, S. W. M., Schraa, G. & Stams, A. J. M. ( 1999; ). Anaerobic microbial reductive dehalogenation of chlorinated ethenes. Bioremediation J 3, 151–169.[CrossRef]
    [Google Scholar]
  25. Miller, E., Wohlfarth, G. & Diekert, G. ( 1997; ). Comparative studies on tetrachloroethene reductive dechlorination mediated by Desulfitobacterium sp. strain PCE-S. Arch Microbiol 168, 513–519.[CrossRef]
    [Google Scholar]
  26. Nübel, U., Engelen, B., Felske, A., Snaidr, J., Wieshuber, A., Amann, R. I., Ludwig, W. & Backhaus, H. ( 1996; ). Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178, 5636–5643.
    [Google Scholar]
  27. Oremland, R. S., Switzer Blum, J., Culbertson, C. W., Visscher, P. T., Miller, L. G., Dowdle, P. & Strohmaier, F. E. ( 1994; ). Isolation, growth, and metabolism of an obligately anaerobic, selenate-respiring bacterium, strain SES-3. Appl Environ Microbiol 60, 3011–3019.
    [Google Scholar]
  28. Ryoo, D., Shim, H., Canada, K., Barbieri, P. & Wood, T. K. ( 2000; ). Aerobic degradation of tetrachloroethylene by toluene-o-xylene monooxygenase of Pseudomonas stutzeri OX1. Nat Biotechnol 18, 775–778.[CrossRef]
    [Google Scholar]
  29. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  30. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  31. Scholten, J. C. M. & Stams, A. J. M. ( 1995; ). The effect of sulfate and nitrate on methane formation in a freshwater sediment. Antonie van Leeuwenhoek 68, 309–315.[CrossRef]
    [Google Scholar]
  32. Scholz-Muramatsu, H., Neumann, A., Meßmer, M., Moore, E. & Diekert, G. ( 1995; ). Isolation and characterization of Dehalospirillum multivorans gen. nov., sp. nov., a tetrachloroethene-utilizing, strictly anaerobic bacterium. Arch Microbiol 163, 48–56.[CrossRef]
    [Google Scholar]
  33. Schumacher, W., Kroneck, P. M. H. & Pfennig, N. ( 1992; ). Comparative systematic study on “Spirillum” 5175, Campylobacter and Wolinella species. Description of “Spirillum” 5175 as Sulfurospirillum deleyianum gen. nov., spec. nov. Arch Microbiol 158, 287–293.[CrossRef]
    [Google Scholar]
  34. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  35. Stolz, J. F., Ellis, D. J., Switzer Blum, J., Ahmann, D., Lovley, D. R. & Oremland, R. S. ( 1999; ). Sulfurospirillum barnesii sp. nov. and Sulfurospirillum arsenophilum sp. nov., new members of the Sulfurospirillum clade of the ε Proteobacteria. Int J Syst Bacteriol 49, 1177–1180.[CrossRef]
    [Google Scholar]
  36. Strunk, O. & Ludwig, W. ( 1995; ). arb: a software environment for sequence data. Technical University of Munich. http://www.arb-home.de/
  37. Van de Pas, B. A., Smidt, H., Hagen, W. R., Van der Oost, J., Schraa, G., Stams, A. J. M. & De Vos, W. M. ( 1999; ). Purification and molecular characterization of ortho-chlorophenol reductive dehalogenase, a key enzyme of halorespiration in Desulfitobacterium dehalogenans. J Biol Chem 274, 20287–20292.[CrossRef]
    [Google Scholar]
  38. Wild, A., Hermann, R. & Leisinger, T. ( 1996; ). Isolation of an anaerobic bacterium which reductively dechlorinates tetrachloroethene and trichloroethene. Biodegradation 7, 507–511.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02417-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02417-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error