sp. nov. and sp. nov., chitin-degrading bacteria isolated from mangrove forests Free

Abstract

Three chitin-degrading strains representing two novel species were isolated from mangrove forests in Okinawa, Japan. The isolates, ABABA23, ABABA211 and ABABA212, were Gram-negative, non-spore-forming, strictly aerobic chemo-organotrophs. The novel strains produced Q-8 as the major isoprenoid quinone component. The predominant fatty acids were iso-C and C. On the basis of 16S rRNA gene sequence analysis, the isolates were closely affiliated with members of the genus . The DNA G+C contents of strains ABABA23 and ABABA212 were 57.8 and 60.2 mol%, respectively. DNA–DNA relatedness values between these two strains and reference strains were significantly lower than 70 %, the generally accepted threshold level below which strains are considered to belong to separate species. Based on differences in taxonomic characteristics, the three isolates represent two novel species of the genus , for which the names sp. nov. (type strain, ABABA212 = JCM 16148 = NCIMB 14577) and sp. nov. (type strain, ABABA23 = JCM 16147 = NCIMB 14576; reference strain, ABABA211) are proposed.

Funding
This study was supported by the:
  • KAKENHI (Award 20580092)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024158-0
2011-09-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/9/2215.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024158-0&mimeType=html&fmt=ahah

References

  1. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  2. Baumann L., Baumann P., Mandel M., Allen R. D. 1972; Taxonomy of aerobic marine eubacteria. J Bacteriol 110:402–429[PubMed]
    [Google Scholar]
  3. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [View Article]
    [Google Scholar]
  4. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  6. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [View Article][PubMed]
    [Google Scholar]
  7. Gooday G. W. 1990; The ecology of chitin degradation. Adv Microb Ecol 11:387–430
    [Google Scholar]
  8. Hugh R., Leifson E. 1953; The taxonomic significance of fermentative versus oxidative metabolism of carbohydrates by various gram negative bacteria. J Bacteriol 66:24–26[PubMed]
    [Google Scholar]
  9. Humm H. J. 1946; Marine agar-digesting bacteria of the South Atlantic coast. Duke Univ Mar Stn Bull 3:45–75
    [Google Scholar]
  10. Jennerjahn T. C., Ittekkot V. 2002; Relevance of mangroves for the production and deposition of organic matter along tropical continental margins. Naturwissenschaften 89:23–30 [View Article][PubMed]
    [Google Scholar]
  11. Keyhani N. O., Roseman S. 1999; Physiological aspects of chitin catabolism in marine bacteria. Biochim Biophys Acta 1473:108–122[PubMed] [CrossRef]
    [Google Scholar]
  12. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Komagata K., Suzuki K. 1987; Lipid and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–207 [View Article]
    [Google Scholar]
  14. Kumar S., Tamura K., Nei M. 2004; mega3: Integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  15. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  16. Miyazaki M., Nogi Y., Usami R., Horikoshi K. 2006; Shewanella surugensis sp. nov., Shewanella kaireitica sp. nov. and Shewanella abyssi sp. nov., isolated from deep-sea sediments of Suruga Bay, Japan. Int J Syst Evol Microbiol 56:1607–1613 [View Article][PubMed]
    [Google Scholar]
  17. Miyazaki M., Nogi Y., Ohta Y., Hatada Y., Fujiwara Y., Ito S., Horikoshi K. 2008; Microbulbifer agarilyticus sp. nov. and Microbulbifer thermotolerans sp. nov., agar-degrading bacteria isolated from deep-sea sediment. Int J Syst Evol Microbiol 58:1128–1133 [View Article][PubMed]
    [Google Scholar]
  18. Muzzarelli R. A. A. 1997; Human enzymatic activities related to the therapeutic administration of chitin derivatives. Cell Mol Life Sci 53:131–140 [View Article][PubMed]
    [Google Scholar]
  19. Nishijima M., Takadera T., Imamura N., Kasai H., An K.-D., Adachi K., Nagao T., Sano H., Yamasato K. 2009; Microbulbifer variabilis sp. nov. and Microbulbifer epialgicus sp. nov., isolated from Pacific marine algae, possess a rod-coccus cell cycle in association with the growth phase. Int J Syst Evol Microbiol 59:1696–1707 [View Article][PubMed]
    [Google Scholar]
  20. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  21. Shigemasa Y., Minami S. 1996; Applications of chitin and chitosan for biomaterials. Biotechnol Genet Eng Rev 13:383–420[PubMed] [CrossRef]
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  23. Tang S.-K., Wang Y., Cai M., Lou K., Mao P.-H., Jin X., Jiang C.-L., Xu L.-H., Li W.-J. 2008; Microbulbifer halophilus sp. nov., a moderately halophilic bacterium from north-west China. Int J Syst Evol Microbiol 58:2036–2040 [View Article][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  25. Tindall B. J., Rosselló-Móra R., Busse H.-J., Ludwig W., Kämpfer P. 2010; Notes on the characterization of prokaryote strains for taxonomic purposes. Int J Syst Evol Microbiol 60:249–266 [View Article][PubMed]
    [Google Scholar]
  26. Wang C.-S., Wang Y., Xu X.-W., Zhang D.-S., Wu Y.-H., Wu M. 2009; Microbulbifer donghaiensis sp. nov., isolated from marine sediment of the East China Sea. Int J Syst Evol Microbiol 59:545–549 [View Article][PubMed]
    [Google Scholar]
  27. Yoon J.-H., Kim I.-G., Shin D.-Y., Kang K. H., Park Y.-H. 2003; Microbulbifer salipaludis sp. nov., a moderate halophile isolated from a Korean salt marsh. Int J Syst Evol Microbiol 53:53–57 [View Article][PubMed]
    [Google Scholar]
  28. Yoon J.-H., Kim I.-G., Oh T.-K., Park Y.-H. 2004; Microbulbifer maritimus sp. nov., isolated from an intertidal sediment from the Yellow Sea, Korea. Int J Syst Evol Microbiol 54:1111–1116 [View Article][PubMed]
    [Google Scholar]
  29. Yoon J.-H., Jung S. Y., Kang S. J., Oh T.-K. 2007; Microbulbifer celer sp. nov., isolated from a marine solar saltern of the Yellow Sea in Korea. Int J Syst Evol Microbiol 57:2365–2369 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024158-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024158-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed