sp. nov., isolated from alpine permafrost Free

Abstract

Strain TSBY 67 was isolated during a study on the phylogenetic diversity of culturable bacteria from alpine permafrost in Tianshan Mountains, China. On the basis of 16S rRNA gene sequence analysis, strain TSBY 67 was closely related to members of the genus and exhibited 96.8 % 16S rRNA gene sequence similarity to 10-46 and PSD 1-4. Strain TSBY 67 grew aerobically, at 4–37 °C, with 0–2 % NaCl and at pH 6–8. Cells were Gram-staining negative, non-motile and non-spore-forming rods. The dominant cellular fatty acids were iso-C (26.9 %), iso-C 3-OH (16.1 %) and iso-Cω9 (15.4 %). The GC content of the DNA was 33.5 mol%. Strain TSBY 67 was distinguishable from its closest phylogenetic neighbours by a combination of phenotypic characteristics. Therefore, strain TSBY 67 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is TSBY 67 ( = NRRL B-51308 = CCTCC AB 207183).

Funding
This study was supported by the:
  • National Outstanding Youth Foundation of China (Award 30625008)
  • International Cooperation Program of the Ministry of Science and Technology of China
  • National High Technology Research and Development Program (Award 2007AA021401)
  • National Basic Research Program of China (Award 2007CB108902)
  • National Natural Science Foundation (Award 30700082)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024141-0
2011-06-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/6/1397.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024141-0&mimeType=html&fmt=ahah

References

  1. Bai Y., Yang D., Wang J., Xu S., Wang X., An L. 2006; Phylogenetic diversity of culturable bacteria from alpine permafrost in the Tianshan Mountains, northwestern China. Res Microbiol 157:741–751 [View Article][PubMed]
    [Google Scholar]
  2. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  3. Bernardet J. F., Nakagawa Y., Holmes B. 2002; Proposed minimal standards for describing new taxa of the family Flavobacteriaceae and emended description of the family. Int J Syst Evol Microbiol 52:1049–1070 [View Article][PubMed]
    [Google Scholar]
  4. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  6. Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. 1994 Methods for General and Molecular Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Hantsis-Zacharov E., Halpern M. 2007; Chryseobacterium haifense sp. nov., a psychrotolerant bacterium isolated from raw milk. Int J Syst Evol Microbiol 57:2344–2348 [View Article][PubMed]
    [Google Scholar]
  8. Hantsis-Zacharov E., Senderovich Y., Halpern M. 2008; Chryseobacterium bovis sp. nov., isolated from raw cow’s milk. Int J Syst Evol Microbiol 58:1024–1028 [View Article][PubMed]
    [Google Scholar]
  9. Ilardi P., Fernández J., Avendaño-Herrera R. 2009; Chryseobacterium piscicola sp. nov., isolated from diseased salmonid fish. Int J Syst Evol Microbiol 59:3001–3005 [View Article][PubMed]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  12. Kämpfer P., Lodders N., Vaneechoutte M., Wauters G. 2009a; Transfer of Sejongia antarctica, Sejongia jeonii and Sejongia marina to the genus Chryseobacterium as Chryseobacterium antarcticum comb. nov., Chryseobacterium jeonii comb. nov. and Chryseobacterium marinum comb. nov.. Int J Syst Evol Microbiol 59:2238–2240 [View Article][PubMed]
    [Google Scholar]
  13. Kämpfer P., Vaneechoutte M., Lodders N., De Baere T., Avesani V., Janssens M., Busse H.-J., Wauters G. 2009b; Description of Chryseobacterium anthropi sp. nov. to accommodate clinical isolates biochemically similar to Kaistella koreensis and Chryseobacterium haifense, proposal to reclassify Kaistella koreensis as Chryseobacterium koreense comb. nov. and emended description of the genus Chryseobacterium . Int J Syst Evol Microbiol 59:2421–2428 [View Article][PubMed]
    [Google Scholar]
  14. Keswani J., Whitman W. B. 2001; Relationship of 16S rRNA sequence similarity to DNA hybridization in prokaryotes. Int J Syst Evol Microbiol 51:667–678[PubMed]
    [Google Scholar]
  15. Kim K. K., Kim M. K., Lim J. H., Park H. Y., Lee S.-T. 2005; Transfer of Chryseobacterium meningosepticum and Chryseobacterium miricola to Elizabethkingia gen. nov. as Elizabethkingia meningoseptica comb. nov. and Elizabethkingia miricola comb. nov.. Int J Syst Evol Microbiol 55:1287–1293 [View Article][PubMed]
    [Google Scholar]
  16. Kim K. K., Lee K. C., Oh H.-M., Lee J.-S. 2008; Chryseobacterium aquaticum sp. nov., isolated from a water reservoir. Int J Syst Evol Microbiol 58:533–537 [View Article][PubMed]
    [Google Scholar]
  17. Li Y., Kawamura Y., Fujiwara N., Naka T., Liu H., Huang X., Kobayashi K., Ezaki T. 2003; Chryseobacterium miricola sp. nov., a novel species isolated from condensation water of space station Mir. Syst Appl Microbiol 26:523–528 [View Article][PubMed]
    [Google Scholar]
  18. Park M. S., Jung S. R., Lee K. H., Lee M. S., Do J. O., Kim S. B., Bae K. S. 2006; Chryseobacterium soldanellicola sp. nov. and Chryseobacterium taeanense sp. nov., isolated from roots of sand-dune plants. Int J Syst Evol Microbiol 56:433–438 [View Article][PubMed]
    [Google Scholar]
  19. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  20. Shimomura K., Kaji S., Hiraishi A. 2005; Chryseobacterium shigense sp. nov., a yellow-pigmented, aerobic bacterium isolated from a lactic acid beverage. Int J Syst Evol Microbiol 55:1903–1906 [View Article][PubMed]
    [Google Scholar]
  21. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA–DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  22. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [View Article]
    [Google Scholar]
  23. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: Molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  24. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  25. Vandamme P., Bernardet J.-F., Segers P., Kersters K., Holmes B. 1994; New perspectives in the classification of the flavobacteria: description of Chryseobacterium gen. nov., Bergeyella gen. nov., and Empedobacter nom. rev.. Int J Syst Bacteriol 44:827–831 [View Article]
    [Google Scholar]
  26. Vaneechoutte M., Kämpfer P., De Baere T., Avesani V., Janssens M., Wauters G. 2007; Chryseobacterium hominis sp. nov., to accommodate clinical isolates biochemically similar to CDC groups II-h and II-c. Int J Syst Evol Microbiol 57:2623–2628 [View Article][PubMed]
    [Google Scholar]
  27. Weon H.-Y., Kim B.-Y., Yoo S.-H., Kwon S.-W., Stackebrandt E., Go S.-J. 2008; Chryseobacterium soli sp. nov. and Chryseobacterium jejuense sp. nov., isolated from soil samples from Jeju, Korea. Int J Syst Evol Microbiol 58:470–473 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024141-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024141-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Most cited Most Cited RSS feed