1887

Abstract

Two novel spore-forming bacteria with broad antimicrobial activity were isolated from roots of . The isolates, SD17 and SD18, were facultatively anaerobic and showed variable Gram reaction. Growth was observed between 20 and 45 °C. DNA G+C content of SD17 was 51·7 mol%, and the major fatty acid was anteiso-C (54·1 %). 16S rRNA gene sequence similarity of SD17 ranged from 98·6 to 91·3 % with other species. The phylogenetic tree showed that isolate SD17 formed a significant monophyletic clade with KCTC 2393 and IFO 15659. DNA–DNA relatedness values for strain SD17 with KCTC 2393 and IFO 15659 were 17·4 and 19·8 %, respectively. These isolates thus merit species status within , for which the name sp. nov. is proposed. The type strain is SD17 (=KCTC 10016BP=NBRC 100335).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02414-0
2004-11-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/54/6/ijs542031.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02414-0&mimeType=html&fmt=ahah

References

  1. Ash, C., Priest, F. G. & Collins, M. D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks, and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  2. Chun, J. & Goodfellow, M. ( 1995; ). A phylogenetic analysis of the genus Nocardia with 16S rRNA gene sequences. Int J Syst Bacteriol 45, 240–245.[CrossRef]
    [Google Scholar]
  3. Chung, Y. R., Kim, C. H., Hwang, I. & Chun, J. ( 2000; ). Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50, 1495–1500.[CrossRef]
    [Google Scholar]
  4. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1140. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  5. De Ley, J. ( 1970; ). Re-examination of the association between melting point, buoyant density, and chemical base composition of deoxyribonucleic acid. J Bacteriol 101, 738–754.
    [Google Scholar]
  6. Elo, S., Suominen, I., Kämpfer, P., Juhanoja, J., Salkinoja-Salonen, M. & Haahtela, K. ( 2001; ). Paenibacillus borealis sp. nov., a nitrogen-fixing species isolated from spruce forest humus in Finland. Int J Syst Evol Microbiol 51, 535–545.
    [Google Scholar]
  7. Felsenstein, J. ( 1985; ). Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783–791.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genetics, University of Washington, Seattle, USA.
  9. Fitch, W. M. & Margoliash, E. ( 1967; ). Construction of phylogenetic trees. Science 155, 279–284.[CrossRef]
    [Google Scholar]
  10. Gerhardt, P., Murray, R. G. E., Wood, W. A. & Krieg, N. R. (editors) ( 1994; ). Methods for General and Molecular Bacteriology. Washington, DC: American Society for Microbiology.
  11. Gutell, R. R. ( 1994; ). Collection of small subunit (16S- and 16S-like) ribosomal RNA structures. Nucleic Acids Res 22, 3502–3507.[CrossRef]
    [Google Scholar]
  12. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  13. Kanzawa, Y., Harada, A., Takeuchi, M., Yokota, A. & Harada, T. ( 1995; ). Bacillus curdlanolyticus sp. nov. and Bacillus kobensis sp. nov., which hydrolyze resistant curdlan. Int J Syst Bacteriol 45, 515–521.[CrossRef]
    [Google Scholar]
  14. Kim, D. S., Weller, D. M. & Cook, R. J. ( 1997; ). Bacillus sp. L324-92 for biological control of three root diseases of wheat grown with reduced tillage. Phytopathology 87, 551–558.[CrossRef]
    [Google Scholar]
  15. Komagata, K. & Suzuki, K. ( 1987; ). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–203.
    [Google Scholar]
  16. Kuroshima, K., Sakane, T., Takata, R. & Yokota, A. ( 1996; ). Bacillus ehimensis sp. nov. and Bacillus chitinolyticus sp. nov., new chitinolytic members of the genus Bacillus. Int J Syst Bacteriol 46, 76–80.[CrossRef]
    [Google Scholar]
  17. Lee, J.-S., Jung, M.-C., Kim, W.-S. & 10 other authors ( 1996; ). Identification of lactic acid bacteria from kimchi by cellular FAMEs analysis. Korean J Appl Microbiol Biotechnol 24, 234–241.
    [Google Scholar]
  18. Lee, J.-S., Pyun, Y.-R. & Bae, K. S. ( 2004; ). Transfer of Bacillus ehimensis and Bacillus chitinolyticus to the genus Paenibacillus with emended descriptions of Paenibacillus ehimensis comb. nov. and Paenibacillus chitinolyticus comb. nov. Int J Syst Evol Microbiol 54, 929–933.[CrossRef]
    [Google Scholar]
  19. Marmur, J. & Doty, P. ( 1962; ). Determination of the base composition of deoxyribonucleic acid from its thermal denaturation temperature. J Mol Biol 5, 109–118.[CrossRef]
    [Google Scholar]
  20. McFaddin, J. F. ( 2000; ). Biochemical Tests for Identification of Medical Bacteria, 3rd edn. Philadelphia: Lippincott Williams & Wilkins.
  21. Meehan, C., Bjourson, A. J. & McMullan, G. ( 2001; ). Paenibacillus azoreducens sp. nov., a synthetic azo dye decolorizing bacterium from industrial wastewater. Int J Syst Evol Microbiol 51, 1681–1685.[CrossRef]
    [Google Scholar]
  22. Nakamura, L. K. ( 1987; ). Bacillus alginolyticus sp. nov. and Bacillus chondroitinus sp. nov., two alginate-degrading species. Int J Syst Bacteriol 37, 284–286.[CrossRef]
    [Google Scholar]
  23. Priest, F. G., Goodfellow, M. & Todd, C. ( 1988; ). A numerical classification of the genus Bacillus. J Gen Microbiol 134, 1847–1882.
    [Google Scholar]
  24. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  25. Shida, O., Takagi, H., Kadowaki, K., Nakamura, L. K. & Komagata, K. ( 1997; ). Transfer of Bacillus alginolyticus, Bacillus chondroitinus, Bacillus curdlanolyticus, Bacillus glucanolyticus, Bacillus kobensis, and Bacillus thiaminolyticus to the genus Paenibacillus and emended description of the genus Paenibacillus. Int J Syst Bacteriol 47, 289–298.[CrossRef]
    [Google Scholar]
  26. Slepecky, R. A. & Hemphill, H. E. ( 1991; ). The genus Bacillus – nonmedical. In The Prokaryotes, pp. 1663–1696. Edited by A. Balows, H. G. Trüper, M. Dworkin, W. Harder & K.-H. Schleifer. New York: Springer.
  27. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  28. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02414-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02414-0
Loading

Data & Media loading...

Electron micrographs of sp. nov. SD17 showing peritrichous flagella (A) and endospores in swollen sporangia (B). Bars, 1 µm.

IMAGE



IMAGE

Full tree showing the phylogenetic position of strains SD17 and SD18 with other species of the genus . was used as an outgroup. Phylogenetic trees were inferred by using the Fitch–Margoliash and neighbour-joining methods. Evolutionary distance matrices for the neighbour-joining and Fitch–Margoliash methods were generated according to the model of Jukes & Cantor (1969). The PHYLIP package was used for analysis. Scale bar, 0.1 accumulated changes per nucleotide. [PDF](18 KB)

PDF

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error