1887

Abstract

Two closely related, Gram-stain-negative, rod-shaped, spore-forming strains, B27 and F6-B70, were isolated from soil samples of Tianmu Mountain National Natural Reserve in Zhejiang, China. Phylogenetic analysis based on 16S rRNA gene and sequences indicated that the isolates were members of the genus . Both isolates were closely related to IFO 15659, SD17 and YC300 (≥95.2 % 16S rRNA gene sequence similarity). DNA–DNA relatedness between strain B27 and DSM 11029, NBRC 100335 and KCTC 2393 was 21.2, 28.6 and 16.8 %, respectively. The major cellular fatty acids of strains B27 and F6-B70 were anteiso-C and iso-C. The cell wall contained -diaminopimelic acid. The two isolates differed from their closest neighbours in terms of phenotypic characteristics and cellular fatty acid profiles (such as variable for oxidase, negative for methyl red test, unable to produce acid from -fructose and glycogen and relatively higher amounts of iso-C and lower amounts of C and iso-C). Strains B27 and F6-B70 represent a novel species of the genus , for which the name sp. nov. is proposed. The type strain is B27 ( = DSM 22342  = CGMCC 1.8946).

Funding
This study was supported by the:
  • Major Program of Science and Technology Department of Zhejiang (Award 2009C12061)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.024109-0
2011-05-01
2024-03-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1133.html?itemId=/content/journal/ijsem/10.1099/ijs.0.024109-0&mimeType=html&fmt=ahah

References

  1. Adékambi T., Shinnick T. M., Raoult D., Drancourt M. 2008; Complete rpoB gene sequencing as a suitable supplement to DNA–DNA hybridization for bacterial species and genus delineation. Int J Syst Evol Microbiol 58:1807–1814 [View Article][PubMed]
    [Google Scholar]
  2. Ash C., Farrow J. A. E., Wallbanks S., Collins M. D. 1991; Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small subunit ribosomal RNA sequences. Lett Appl Microbiol 13:202–206 [View Article]
    [Google Scholar]
  3. Ash C., Priest F. G., Collins M. D. 1993; Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus . Antonie van Leeuwenhoek 64:253–260 [View Article][PubMed]
    [Google Scholar]
  4. Barrow G. I., Feltham R. K. A. (editors) 1993 Cowan and Steel’s Manual for the Identification of Medical Bacteria, 3rd edn. Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  5. Bosshard P. P., Zbinden R., Altwegg M. 2002; Paenibacillus turicensis sp. nov., a novel bacterium harbouring heterogeneities between 16S rRNA genes. Int J Syst Evol Microbiol 52:2241–2249 [View Article][PubMed]
    [Google Scholar]
  6. Chung Y. R., Kim C. H., Hwang I., Chun J. 2000; Paenibacillus koreensis sp. nov., a new species that produces an iturin-like antifungal compound. Int J Syst Evol Microbiol 50:1495–1500[PubMed] [CrossRef]
    [Google Scholar]
  7. da Mota F. F., Gomes E. A., Paiva E., Rosado A. S., Seldin L. 2004; Use of rpoB gene analysis for identification of nitrogen-fixing Paenibacillus species as an alternative to the 16S rRNA gene. Lett Appl Microbiol 39:34–40 [View Article][PubMed]
    [Google Scholar]
  8. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  9. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [View Article][PubMed]
    [Google Scholar]
  10. Felsenstein, J. (2005). phylip (phylogeny inference package) version 3.63. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  11. Gregersen T. 1978; Rapid method for distinction of Gram-negative from Gram-positive bacteria. Eur J Appl Microbiol Biotechnol 5:123–127 [View Article]
    [Google Scholar]
  12. Hamasaki Y., Watanabe Y., Kotoura S., Fuchu H., Sugiyama M., Hashizume K., Morita H. 2005; Paenibacillus macerans possesses two types of 16S rDNA copies in a genome with a length difference of twelve base pairs. Biosci Biotechnol Biochem 69:1995–1998 [View Article][PubMed]
    [Google Scholar]
  13. Hasegawa T., Takizawa M., Tanida S. 1983; A rapid analysis for chemical grouping of aerobic actinomycetes. J Gen Appl Microbiol 29:319–322 [View Article]
    [Google Scholar]
  14. He Z. G., Kisla D., Zhang L. W., Yuan C. H., Green-Church K. B., Yousef A. E. 2007; Isolation and identification of a Paenibacillus polymyxa strain that coproduces a novel lantibiotic and polymyxin. Appl Environ Microbiol 73:168–178 [View Article][PubMed]
    [Google Scholar]
  15. Ito M., Koyama Y. 1972; Jokipeptin, a new peptide antibiotic. I. Isolation, physico-chemical and biological characteristics. J Antibiot (Tokyo) 25:304–308[PubMed] [CrossRef]
    [Google Scholar]
  16. Kajimura Y., Kaneda M. 1996; Fusaricidin A, a new depsipeptide antibiotic produced by Bacillus polymyxa KT-8. Taxonomy, fermentation, isolation, structure elucidation and biological activity. J Antibiot (Tokyo) 49:129–135[PubMed] [CrossRef]
    [Google Scholar]
  17. Kajimura Y., Kaneda M. 1997; Fusaricidins B, C and D, new depsipeptide antibiotics produced by Bacillus polymyxa KT-8: isolation, structure elucidation and biological activity. J Antibiot (Tokyo) 50:220–228 [CrossRef]
    [Google Scholar]
  18. Katz E., Demain A. L. 1977; The peptide antibiotics of Bacillus: chemistry, biogenesis, and possible functions. Bacteriol Rev 41:449–474[PubMed]
    [Google Scholar]
  19. Kim D.-S., Bae C.-Y., Jeon J.-J., Chun S.-J., Oh H. W., Hong S. G., Baek K.-S., Moon E. Y., Bae K. S. 2004; Paenibacillus elgii sp. nov., with broad antimicrobial activity. Int J Syst Evol Microbiol 54:2031–2035 [View Article][PubMed]
    [Google Scholar]
  20. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [View Article][PubMed]
    [Google Scholar]
  21. Kluge A. G., Farris J. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [View Article]
    [Google Scholar]
  22. Kovács N. 1956; Identification of Pseudomonas pyocyanea by the oxidase reaction. Nature 178:703 [View Article][PubMed]
    [Google Scholar]
  23. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2–11 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  24. Nakajima N., Chihara S., Koyama Y. 1972; A new antibiotic, gatavalin. I. Isolation and characterization. J Antibiot (Tokyo) 25:243–247[PubMed] [CrossRef]
    [Google Scholar]
  25. Nübel U., Engelen B., Felske A., Snaidr J., Wieshuber A., Amann R. I., Ludwig W., Backhaus H. 1996; Sequence heterogeneities of genes encoding 16S rRNAs in Paenibacillus polymyxa detected by temperature gradient gel electrophoresis. J Bacteriol 178:5636–5643[PubMed]
    [Google Scholar]
  26. Pichard B., Larue J. P., Thouvenot D. 1995; Gavaserin and saltavalin, new peptide antibiotics produced by Bacillus polymyxa . FEMS Microbiol Lett 133:215–218 [View Article][PubMed]
    [Google Scholar]
  27. Roux V., Raoult D. 2004; Paenibacillus massiliensis sp. nov., Paenibacillus sanguinis sp. nov. and Paenibacillus timonensis sp. nov., isolated from blood cultures. Int J Syst Evol Microbiol 54:1049–1054 [View Article][PubMed]
    [Google Scholar]
  28. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  29. Shida O., Takagi H., Kadowaki K., Nakamura L. K., Komagata K. 1997; Emended description of Paenibacillus amylolyticus and description of Paenibacillus illinoisensis sp. nov. and Paenibacillus chibensis sp. nov.. Int J Syst Bacteriol 47:299–306 [View Article][PubMed]
    [Google Scholar]
  30. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp. 607–654 Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  31. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  32. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [View Article][PubMed]
    [Google Scholar]
  33. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  34. Wu X., Wen Y., Qian C., Li O., Fang H., Chen W. 2008; Taxonomic study of a chromomycin-producing strain and reclassification of Streptomyces cavourensis subsp. washingtonensis as a later synonym of Streptomyces griseus . Int J Syst Evol Microbiol 58:2783–2787 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.024109-0
Loading
/content/journal/ijsem/10.1099/ijs.0.024109-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error