1887

Abstract

The heterotrophic, aerobic, facultatively anaerobic, catalase- and oxidase-positive, non-motile strain MWH-PoolGreenA3, isolated from a rock pool filled with freshwater, was characterized. The strain grew on NSY medium over a NaCl range of 0.0–0.3 % (w/v). Whole-cell fatty acids were dominated by Cω7 (feature 3), Cω7 and straight-chain C; furthermore, the components C and C 2-OH were present. The DNA G+C content was 48.3 mol%. Phylogenetic analysis as well as strong similarities in phenotypic and chemotaxonomic traits indicated the affiliation with the genus . 16S rRNA gene similarity values with the three described species of the genus ranged from 96.7 to 97.8 %. DNA–DNA hybridization experiments did not reveal that the strain belongs to a previously described species of the genus. The strain can be discriminated from previously established species of the genus by chemotaxonomic and phenotypic traits. The bacterium possesses a free-living lifestyle and represents a group of planktonic freshwater bacteria occurring with high cell numbers in many freshwater lakes. Based on the phylogeny revealed and the chemotaxonomic and phenotypic differences from previously described species of the genus, we propose to establish the novel species sp. nov. with the type strain MWH-PoolGreenA3 ( = DSM 21994  = CIP 110079).

Funding
This study was supported by the:
  • Austrian Science Fund (Award P19853)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023929-0
2011-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/788.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023929-0&mimeType=html&fmt=ahah

References

  1. Alonso C., Zeder M., Piccini C., Conde D., Pernthaler J. 2009; Ecophysiological differences of betaproteobacterial populations in two hydrochemically distinct compartments of a subtropical lagoon. Environ Microbiol 11:867–876 [View Article][PubMed]
    [Google Scholar]
  2. Chun J., Lee J.-H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y. W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [View Article][PubMed]
    [Google Scholar]
  3. Cuadrado V., Gomila M., Merini L., Giulietti A. M., Moore E. R. 2010; Cupriavidus pampae sp. nov., a novel herbicide-degrading bacterium isolated from agricultural soil. Int J Syst Evol Microbiol 60:2606–2612 [View Article][PubMed]
    [Google Scholar]
  4. Donachie S. P., Hou S., Lee K. S., Riley C. W., Pikina A., Belisle C., Kempe S., Gregory T. S., Bossuyt A. et al. 2004; The Hawaiian Archipelago: a microbial diversity hotspot. Microb Ecol 48:509–520 [View Article][PubMed]
    [Google Scholar]
  5. Goris J., De Vos P., Coenye T., Hoste B., Janssens D., Brim H., Diels L., Mergeay M., Kersters K., Vandamme P. 2001; Classification of metal-resistant bacteria from industrial biotopes as Ralstonia campinensis sp. nov., Ralstonia metallidurans sp. nov. and Ralstonia basilensis Steinle et al. 1998 emend. Int J Syst Evol Microbiol 51:1773–1782[PubMed] [CrossRef]
    [Google Scholar]
  6. Hahn M. W. 2003; Isolation of strains belonging to the cosmopolitan Polynucleobacter necessarius cluster from freshwater habitats located in three climatic zones. Appl Environ Microbiol 69:5248–5254 [View Article][PubMed]
    [Google Scholar]
  7. Hahn M. W. 2004; Broad diversity of viable bacteria in ‘sterile’ (0.2 µm) filtered water. Res Microbiol 155:688–691 [View Article][PubMed]
    [Google Scholar]
  8. Hahn M. W., Stadler P., Wu Q. L., Pöckl M. 2004; The filtration-acclimatization method for isolation of an important fraction of the not readily cultivable bacteria. J Microbiol Methods 57:379–390 [View Article][PubMed]
    [Google Scholar]
  9. Hahn M. W., Pöckl M., Wu Q. L. 2005; Low intraspecific diversity in a polynucleobacter subcluster population numerically dominating bacterioplankton of a freshwater pond. Appl Environ Microbiol 71:4539–4547 [View Article][PubMed]
    [Google Scholar]
  10. Hahn M. W., Lang E., Brandt U., Wu Q. L., Scheuerl T. 2009; Emended description of the genus Polynucleobacter and the species Polynucleobacter necessarius and proposal of two subspecies, P. necessarius subsp. necessarius subsp. nov. and P. necessarius subsp. asymbioticus subsp. nov. Int J Syst Evol Microbiol 59:2002–2009 [View Article][PubMed]
    [Google Scholar]
  11. Hahn M. W., Lang E., Brandt U., Lünsdorf H., Wu Q. L., Stackebrandt E. 2010; Polynucleobacter cosmopolitanus sp. nov., free-living planktonic bacteria inhabiting freshwater lakes and rivers. Int J Syst Evol Microbiol 60:166–173 [View Article][PubMed]
    [Google Scholar]
  12. Hahn M. W., Lang E., Tarao M., Brandt U. 2011; Polynucleobacter rarus sp. nov., a free-living planktonic bacterium isolated from an acidic lake. Int J Syst Evol Microbiol 61:781–787 [View Article][PubMed]
    [Google Scholar]
  13. Heckmann K., Schmidt H. J. 1987; Polynucleobacter necessarius gen. nov., sp. nov., an obligately endosymbiotic bacterium living in the cytoplasm of Euplotes . Int J Syst Bacteriol 37:456–457 [View Article]
    [Google Scholar]
  14. Horner-Devine M. C., Leibold M. A., Smith V., Bohannan B. J. M. 2003; Bacterial diversity patterns along a gradient of primary productivity. Ecol Lett 6:613–622 [View Article]
    [Google Scholar]
  15. Kämpfer P., Kroppenstedt R. M. 1996; Numerical analysis of fatty acid patterns of coryneform bacteria and related taxa. Can J Microbiol 42:989–1005 [View Article]
    [Google Scholar]
  16. Salcher M. M., Pernthaler J., Zeder M., Psenner R., Posch T. 2008; Spatio-temporal niche separation of planktonic Betaproteobacteria in an oligo-mesotrophic lake. Environ Microbiol 10:2074–2086 [View Article][PubMed]
    [Google Scholar]
  17. Sasser, M. (1990). Identification of bacteria by gas chromatography of cellular fatty acids, MIDI Technical Note 101. Newark, DE: MIDI Inc.
  18. Shaw A. K., Halpern A. L., Beeson K., Tran B., Venter J. C., Martiny J. B. 2008; It’s all relative: ranking the diversity of aquatic bacterial communities. Environ Microbiol 10:2200–2210 [View Article][PubMed]
    [Google Scholar]
  19. Simpson J. M., Santo Domingo J. W., Reasoner D. J. 2004; Assessment of equine fecal contamination: the search for alternative bacterial source-tracking targets. FEMS Microbiol Ecol 47:65–75 [View Article][PubMed]
    [Google Scholar]
  20. Stackebrandt E., Goebel B. M. 1994; Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44:846–849 [View Article]
    [Google Scholar]
  21. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [View Article][PubMed]
    [Google Scholar]
  22. Tóth E. M., Kéki Z., Homonnay Z. G., Borsodi A. K., Márialigeti K., Schumann P. 2008; Nocardioides daphniae sp. nov., isolated from Daphnia cucullata (Crustacea: Cladocera). Int J Syst Evol Microbiol 58:78–83 [View Article][PubMed]
    [Google Scholar]
  23. Vannini C., Pöckl M., Petroni G., Wu Q. L., Lang E., Stackebrandt E., Schrallhammer M., Richardson P. M., Hahn M. W. 2007; Endosymbiosis in statu nascendi: close phylogenetic relationship between obligately endosymbiotic and obligately free-living Polynucleobacter strains (Betaproteobacteria). Environ Microbiol 9:347–359 [View Article][PubMed]
    [Google Scholar]
  24. Watanabe K., Komatsu N., Ishii Y., Negishi M. 2009; Effective isolation of bacterioplankton genus Polynucleobacter from freshwater environments grown on photochemically degraded dissolved organic matter. FEMS Microbiol Ecol 67:57–68 [View Article][PubMed]
    [Google Scholar]
  25. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  26. Wu Q. L., Hahn M. W. 2006a; Differences in structure and dynamics of Polynucleobacter communities in a temperate and a subtropical lake, revealed at three phylogenetic levels. FEMS Microbiol Ecol 57:67–79 [View Article][PubMed]
    [Google Scholar]
  27. Wu Q. L., Hahn M. W. 2006b; High predictability of the seasonal dynamics of a species-like Polynucleobacter population in a freshwater lake. Environ Microbiol 8:1660–1666 [View Article][PubMed]
    [Google Scholar]
  28. Wu Q. L., Zwart G., Schauer M., Kamst-van Agterveld M. P., Hahn M. W. 2006; Bacterioplankton community composition along a salinity gradient of sixteen high-mountain lakes located on the Tibetan Plateau, China. Appl Environ Microbiol 72:5478–5485 [View Article][PubMed]
    [Google Scholar]
  29. Zwart G., Crump B. C., Kamst-van Agterveld M. P., Hagen F., Han S.-K. 2002; Typical freshwater bacteria: an analysis of available 16S rRNA gene sequences from plankton of lakes and rivers. Aquat Microb Ecol 28:141–155 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023929-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023929-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error