1887

Abstract

Seven strains of the genus were obtained from natural thermal sulfide (strains D-501, D-502, D-504, D-505 and D-507) and low-temperature ferrous (strain HS) springs and from an activated sludge system (strain D-380). These isolates and strainsof obtained from the DSMZ ( DSM 6575, DSM 565 and DSM 566) were studied using a polyphasic taxonomic approach. All strains had Q-8 as the major quinone and Cω7, C and Cω7 as the major fatty acids. The DNA–DNA hybridization results and 16S rRNA, and gene sequencing experiments showed that isolates D-501, D-502, D-504, D-505, D-507 and D-380 were closely related to the type strain of DSM 6575. However, strains D-501, D-502, D-504, D-505 and D-507 significantly differed from the heterotrophic strain DSM 6575 by their capability for lithotrophic growth with reduced sulfur compounds as an electron donor for energy conservation and some other phenotypic features. For this reason, strains D-501, D-502, D-504, D-505 and D-507 merit a separate taxonomic classification at the subspecies level. The name subsp. subsp. nov. (type strain D-501 = DSM 22545 = VKM B-2573) is proposed. The subspecies subsp. natans subsp. nov. is automatically created as a result of this proposal. Strain D-380 was phenotypically closely related to DSM 6575. Strains D-380 and DSM 6575 were assigned to the subspecies subsp. subsp. nov. (type strain DSM 6575 = ATCC 13338). The 16S rRNA, and gene sequences obtained for strains HS and DSM 565 showed very low sequence similarity values of 97.3 %, 89.7 % and 88.4 %, respectively, with DSM 6575. Strain HS shared 99 % DNA–DNA relatedness with strain

DSM 565 and 48 % with DSM 6575. The 16S rRNA, and gene sequence similarities between strain DSM 566 and DSM 6575 were 97.5 %, 91.5 % and 87.0 %, respectively. Strain DSM 566 had 52 % DNA–DNA relatedness to DSM 6575 and shared 44 % DNA–DNA similarity with strain HS. The creation of two novel species is proposed, sp. nov. for strains HS and DSM 565 (type strain HS = DSM 21226 = VKM B-2519) and sp. nov. for strain DSM 566 (type strain DSM 566 = ATCC 29330). Emended descriptions of the genus and of are presented

Funding
This study was supported by the:
  • Russian Foundation for Fundamental Research (Award 05-04-48299)
  • Program of Presidium of Russian Academy of Sciences ‘Molecular and Cell Biology’ (Award 07-04-00651)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023887-0
2011-04-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/4/916.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023887-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. (editors) 1994 Current protocols in Molecular Biology New York: Wiley;
    [Google Scholar]
  2. Bej A. K., Mahbubani M. H., Dicesare J. L., Atlas R. M. 1991; Polymerase chain reaction-gene probe detection of microorganisms by using filter-concentrated samples. Appl Environ Microbiol 57:3529–3534[PubMed]
    [Google Scholar]
  3. Blackwood K. S., He C., Gunton J., Turenne C. Y., Wolfe J., Kabani A. M. 2000; Evaluation of recA sequences for identification of Mycobacterium species. J Clin Microbiol 38:2846–2852[PubMed]
    [Google Scholar]
  4. Chernousova E. Iu., Akimov V. N., Gridneva E. V., Dubinina G. A., Grabovich M. Iu. 2008; [Phylogenetic in situ/ex situ analysis of a sulfur mat microbial community from a thermal sulfide stream in the North Caucasus]. Mikrobiologiia 77:255–260 (in Russian) [View Article][PubMed]
    [Google Scholar]
  5. Corstjens P., Muyzer G. 1993; Phylogenetic analysis of the metal oxidizing bacteria Leptothrix discophora and Sphaerotilus natans using 16S rDNA sequence data. Syst Appl Microbiol 16:219–223 [CrossRef]
    [Google Scholar]
  6. De Ley J., Cattoir H., Reynaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–142 [View Article][PubMed]
    [Google Scholar]
  7. Dondero N. C. 1961; Sphaerotilus, its nature and economic significance. Adv Appl Microbiol 3:77–107 [View Article][PubMed]
    [Google Scholar]
  8. Eikelboom D. H. 1975; Filamentous organisms observed in activated sludge. Water Res 9:365–388 [View Article]
    [Google Scholar]
  9. Felsenstein, J. (1993). phylip (phylogeny inference package), version 3.5c. Distributed by the author. Department of Genome Sciences, University of Washington, Seattle, USA.
  10. Fox G. E., Wisotzkey J. D., Jurtshuk P. Jr 1992; How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42:166–170 [View Article][PubMed]
    [Google Scholar]
  11. Gerhardt P., Murray R. G. E., Costilow R. N., Nester E. W., Wood W. A., Krieg N. R., Phillips G. B. (editors) 1981 Manual of Methods for General Bacteriology Washington, DC: American Society for Microbiology;
    [Google Scholar]
  12. Gridneva E. V., Grabovich M. Iu., Dubinina G. A., Chernousova E. Iu., Akimov V. N. 2009; [Ecophysiology of lithotrophic sulfur-oxidizing Sphaerotilus species from sulfide springs in the Northern Caucasus]. Mikrobiologiia 78:89–97 (in Russian) [View Article][PubMed]
    [Google Scholar]
  13. Guindon S., Gascuel O. 2003; A simple, fast, and accurate algorithm to estimate large phylogenies by maximum likelihood. Syst Biol 52:696–704 [View Article][PubMed]
    [Google Scholar]
  14. Hill J. E., Town J. R., Hemmingsen S. M. 2006; Improved template representation in cpn60 polymerase chain reaction (PCR) product libraries generated from complex templates by application of a specific mixture of PCR primers. Environ Microbiol 8:741–746 [View Article][PubMed]
    [Google Scholar]
  15. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol. 3 pp. 21–132 Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  16. Kämpfer P. 1997; Detection and cultivation of filamentous bacteria from activated sludge. FEMS Microbiol Ecol 23:169–181 [View Article]
    [Google Scholar]
  17. Kämpfer P. 1998; Some chemotaxonomic and physiological properties of the genus Sphaerotilus . Syst Appl Microbiol 21:245–250 [CrossRef]
    [Google Scholar]
  18. Kämpfer P., Spring S. 2005; Genus Incertas Sedis XVI. Sphaerotilus Kützing 1833.. In Bergey’s Manual of Systematic Bacteriology, 2nd edn. pp. 750–755 Edited by Brenner D. Y., Krieg N. R., Garrity G. M. New York: Springer;
    [Google Scholar]
  19. Kützing F. T. 1833; [Beitrag zur Kenntnis über die Entstehung und Metamorphose der niederen vegetalischen Organismen, nebst einer systematischen Zusammensetzung der hierher gehörigen niederen Algenformen]. Linnaea 8:335–387 (in German)
    [Google Scholar]
  20. Kwok A. Y., Su S. C., Reynolds R. P., Bay S. J., Av-Gay Y., Dovichi N. J., Chow A. W. 1999; Species identification and phylogenetic relationships based on partial HSP60 gene sequences within the genus Staphylococcus . Int J Syst Bacteriol 49:1181–1192 [View Article][PubMed]
    [Google Scholar]
  21. Lane D. J. 1991; 16S/23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp. 115–175 Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  22. Ludwig W., Strunk O., Klugbauer S., Klugbauer N., Weizenegger M., Neumaier J., Bachleitner M., Schleifer K. H. 1998; Bacterial phylogeny based on comparative sequence analysis. Electrophoresis 19:554–568 [View Article][PubMed]
    [Google Scholar]
  23. Medlin L., Elwood H. J., Stickel S., Sogin M. L. 1988; The characterization of enzymatically amplified eukaryotic 16S-like rRNA-coding regions. Gene 71:491–499 [View Article][PubMed]
    [Google Scholar]
  24. Owen R. J., Lapage S. P. 1976; The thermal denaturation of partly purified bacterial deoxyribonucleic acid and its taxonomic applications. J Appl Bacteriol 41:335–340[PubMed] [CrossRef]
    [Google Scholar]
  25. Pellegrin V., Juretschko S., Wagner M., Cottenceau G. 1999; Morphological and biochemical properties of a Sphaerotilus sp. isolated from paper mill slimes. Appl Environ Microbiol 65:156–162[PubMed]
    [Google Scholar]
  26. Pfennig N. D., Lippert K. D. 1966; Uber das Vitamin B12-Bedurfnis phototropher Schwefelbakterien. Arch Mikrobiol 55:245–256 [View Article]
    [Google Scholar]
  27. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  28. Siering P. L., Ghiorse W. C. 1996; Phylogeny of the Sphaerotilus-Leptothrix group inferred from morphological comparisons, genomic fingerprinting, and 16S ribosomal DNA sequence analyses. Int J Syst Bacteriol 46:173–182 [View Article][PubMed]
    [Google Scholar]
  29. Stead D. E., Sellwood J. E., Wilson J., Viney I. 1992; Evaluation of a commercial microbial identification system based on fatty acid profiles for rapid, accurate identification of plant pathogenic bacteria. J Appl Bacteriol 72:315–321 [CrossRef]
    [Google Scholar]
  30. Stokes J. L. 1954; Studies on the filamentous sheathed iron bacterium Sphaerotilus natans . J Bacteriol 67:278–291[PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  32. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570[PubMed]
    [Google Scholar]
  33. van Veen W. L., Mulder E. G., Deinema M. H. 1978; The Sphaerotilus-Leptothrix group of bacteria. Microbiol Rev 42:329–356[PubMed]
    [Google Scholar]
  34. Wayne L. G., Brenner D. J., Colwell R. R., Grimont P. A. D., Kandler O., Krichevsky M. I., Moore L. H., Moore W. E. C., Murray R. G. E. et al. 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [View Article]
    [Google Scholar]
  35. Yamamoto S., Harayama S. 1995; PCR amplification and direct sequencing of gyrB genes with universal primers and their application to the detection and taxonomic analysis of Pseudomonas putida strains. Appl Environ Microbiol 61:1104–1109[PubMed]
    [Google Scholar]
  36. Yamamoto S., Harayama S. 1998; Phylogenetic relationships of Pseudomonas putida strains deduced from the nucleotide sequences of gyrB, rpoD and 16S rRNA genes. Int J Syst Bacteriol 48:813–819 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023887-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023887-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error