1887

Abstract

A group of 13 strains was isolated from samples of biofilm formation on the mural paintings of the Servilia tomb (necropolis of Carmona, Spain) and the Saint-Catherine chapel (castle at Herberstein, Austria). The strains were subjected to a polyphasic taxonomic study, including (GTG)-PCR, 16S rDNA sequence analysis, DNA–DNA hybridizations, DNA base ratio determination, analysis of fatty acids, polar lipids and menaquinones and morphological and biochemical characterization. In a phylogenetic tree based on neighbour-joining of 16S rDNA sequences, the strains are divided in two major groups, representing three novel species according to DNA–DNA relatedness, that are positioned at approximately equal distances from and . After comparison of the novel results with existing data, the transfer of the species of to is proposed, with the resulting new combinations comb. nov. and comb. nov. Additionally, three novel species are described, for which the names sp. nov., sp. nov. and sp. nov. are proposed. The respective type strains are LMG 20964 (=DSM 14868), LMG 19488 (=DSM 14866) and LMG 19492 (=DSM 14867). Finally, an emended description of the genus is given.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02371-0
2003-03-01
2019-10-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530501.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02371-0&mimeType=html&fmt=ahah

References

  1. Altenburger, P., Kämpfer, P., Makristathis, A., Lubitz, W. & Busse, H.-J. ( 1996; ). Classification of bacteria isolated from a medieval wall painting. J Biotechnol 47, 39–52.[CrossRef]
    [Google Scholar]
  2. Arahal, D. R., Márquez, M. C., Volcani, B. E., Schleifer, K. H. & Ventosa, A. ( 1999; ). Bacillus marismortui sp. nov., a new moderately halophilic species from the Dead Sea. Int J Syst Bacteriol 49, 521–530.[CrossRef]
    [Google Scholar]
  3. Arahal, D. R., Márquez, M. C., Volcani, B. E., Schleifer, K. H. & Ventosa, A. ( 2000; ). Reclassification of Bacillus marismortui as Salibacillus marismortui comb. nov. Int J Syst Evol Microbiol 50, 1501–1503.[CrossRef]
    [Google Scholar]
  4. Busse, H.-J., Kämpfer, P. & Denner, E. B. M. ( 1999; ). Chemotaxonomic characterisation of Sphingomonas. J Ind Microbiol Biotechnol 23, 242–251.[CrossRef]
    [Google Scholar]
  5. Ciferri, O. ( 1999; ). Microbial degradation of paintings. Appl Environ Microbiol 65, 879–885.
    [Google Scholar]
  6. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872, 174AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  7. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  8. Fahmy, F., Flossdorf, J. & Claus, D. ( 1985; ). The DNA base composition of the type strains of the genus Bacillus. Syst Appl Microbiol 6, 60–65.[CrossRef]
    [Google Scholar]
  9. Garabito, M. J., Arahal, D. R., Mellado, E., Márquez, M. C. & Ventosa, A. ( 1997; ). Bacillus salexigens sp. nov., a new moderately halophilic Bacillus species. Int J Syst Bacteriol 47, 735–741.[CrossRef]
    [Google Scholar]
  10. Goto, K., Omura, T., Hara, Y. & Sadaie, Y. ( 2000; ). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46, 1–8.[CrossRef]
    [Google Scholar]
  11. Heyndrickx, M., Vauterin, L., Vandamme, P., Kersters, K. & De Vos, P. ( 1996; ). Applicability of combined amplified ribosomal DNA restriction analysis (ARDRA) patterns in bacterial phylogeny and taxonomy. J Microbiol Methods 26, 247–259.[CrossRef]
    [Google Scholar]
  12. Heyndrickx, M., Lebbe, L., Vancanneyt, M. & 7 other authors ( 1997; ). A polyphasic reassessment of the genus Aneurinibacillus, reclassification of Bacillus thermoaerophilus (Meier-Stauffer et al. 1996) as Aneurinibacillus thermoaerophilus comb. nov., and emended descriptions of A. aneurinilyticus corrig., A. migulanus, and A. thermoaerophilus. Int J Syst Bacteriol 47, 808–817.[CrossRef]
    [Google Scholar]
  13. Heyndrickx, M., Lebbe, L., Kersters, K., De Vos, P., Forsyth, G. & Logan, N. A. ( 1998; ). Virgibacillus: a new genus to accommodate Bacillus pantothenticus ( Proom and Knight 1950 ). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48, 99–106.[CrossRef]
    [Google Scholar]
  14. Heyndrickx, M., Lebbe, L., Kersters, K., Hoste, B., De Wachter, R., De Vos, P., Forsyth, G. & Logan, N. A. ( 1999; ). Proposal of Virgibacillus proomii sp. nov. and emended description of Virgibacillus pantothenticus ( Proom and Knight 1950 ) Heyndrickx et al. 1998 . Int J Syst Bacteriol 49, 1083–1090.[CrossRef]
    [Google Scholar]
  15. Heyrman, J. & Swings, J. ( 2001; ). 16S rDNA sequence analysis of bacterial isolates from biodeteriorated mural paintings in the Servilia tomb (necropolis of Carmona, Seville, Spain). Syst Appl Microbiol 24, 417–422.[CrossRef]
    [Google Scholar]
  16. Heyrman, J., Mergaert, J., Denys, R. & Swings, J. ( 1999; ). The use of fatty acid methyl ester analysis (FAME) for the identification of heterotrophic bacteria present on three mural paintings showing severe damage by microorganisms. FEMS Microbiol Lett 181, 55–62.[CrossRef]
    [Google Scholar]
  17. Kämpfer, P. ( 1994; ). Limits and possibilities of total fatty acid analysis for classification and identification of Bacillus species. Syst Appl Microbiol 17, 86–98.[CrossRef]
    [Google Scholar]
  18. Lapage, S. P., Sneath, P. H. A., Lessel, E. F., Skerman, V. B. D., Seeliger, H. P. R. & Clark, W. A. (editors) ( 1992; ). International Code of Nomenclature of Bacteria (1990 Revision). Bacteriological Code. Washington, DC: American Society for Microbiology.
  19. Logan, N. A. & Berkeley, R. C. W. ( 1984; ). Identification of Bacillus strains using the API system. J Gen Microbiol 130, 1871–1882.
    [Google Scholar]
  20. Logan, N. A., Lebbe, L., Hoste, B. & 7 other authors ( 2000; ). Aerobic endospore-forming bacteria from geothermal environments in northern Victoria Land, Antarctica, and Candlemas Island, South Sandwich archipelago, with the proposal of Bacillus fumarioli sp. nov. Int J Syst Evol Microbiol 50, 1741–1753.
    [Google Scholar]
  21. Marmur, J. ( 1961; ). A procedure for the isolation of deoxyribonucleic acid from micro-organisms. J Mol Biol 3, 208–218.[CrossRef]
    [Google Scholar]
  22. Mergaert, J., Verdonck, L. & Kersters, K. ( 1993; ). Transfer of Erwinia ananas (synonym, Erwinia uredovora) and Erwinia stewartii to the genus Pantoea emend. as Pantoea ananas (Serrano 1928) comb. nov. and Pantoea stewartii (Smith 1898) comb. nov., respectively, and description of Pantoea stewartii subsp. indologenes subsp. nov. Int J Syst Bacteriol 43, 162–173.[CrossRef]
    [Google Scholar]
  23. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  24. Pearson, W. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence comparison. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
    [Google Scholar]
  25. Pitcher, D. G., Saunders, N. A. & Owen, R. J. ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. Lett Appl Microbiol 8, 151–156.[CrossRef]
    [Google Scholar]
  26. Proom, H. & Knight, B. C. J. G. ( 1950; ). Bacillus pantothenticus (n. sp.). J Gen Microbiol 4, 539–541.[CrossRef]
    [Google Scholar]
  27. Rademaker, J. L. W. & de Bruijn, F. J. ( 1997; ). Characterization and classification of microbes by rep-PCR genomic fingerprinting and computer assisted pattern analysis. In DNA Markers: Protocols, Applications and Overviews, pp. 151–171. Edited by G. Gaetano-Anollés & P. M. Gresshoff. New York: Wiley.
  28. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  29. Stackebrandt, E. & Goebel, B. M. ( 1994; ). Taxonomic note: a place for DNA-DNA reassociation and 16S rRNA sequence analysis in the present species definition in bacteriology. Int J Syst Bacteriol 44, 846–849.[CrossRef]
    [Google Scholar]
  30. Tindall, B. J. ( 1990; ). A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13, 128–130.[CrossRef]
    [Google Scholar]
  31. Ventosa, A., Marquez, M. C., Kocur, M. & Tindall, B. J. ( 1993; ). Comparative study of “Micrococcus sp.” strains CCM 168 and CCM 1405 and members of the genus Salinicoccus. Int J Syst Bacteriol 43, 245–248.[CrossRef]
    [Google Scholar]
  32. Versalovic, J., Schneider, M., de Bruijn, F. J. & Lupksi, J. R. ( 1994; ). Genomic fingerprinting of bacteria using repetitive sequence-based polymerase chain reaction. Methods Mol Cell Biol 5, 25–40.
    [Google Scholar]
  33. Vreeland, R. H., Rosenzweig, W. D. & Powers, D. W. ( 2000; ). Isolation of a 250 million-year-old halotolerant bacterium from a primary salt crystal. Nature 407, 897–900.[CrossRef]
    [Google Scholar]
  34. Wainø, M., Tindall, B. J., Schumann, P. & Ingvorsen, K. ( 1999; ). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49, 821–831.[CrossRef]
    [Google Scholar]
  35. Willems, A., Doignon-Bourcier, F., Goris, J., Coopman, R., de Lajudie, P., De Vos, P. & Gillis, M. ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. Int J Syst Evol Microbiol 51, 1315–1322.
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02371-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02371-0
Loading

Data & Media loading...

Supplements

Photomicrographs of sporangia and vegetative cells of the type strains of sp. nov. (a), sp. nov. (b) and sp. nov. (c). Bars, 2 µm. In (a), sporangia are swollen with subterminal, ellipsoidal and spherical spores. In (b), rods and coccoid rods form sporangia that are swollen with ellipsoidal spores. In (c), sporangia are swollen by terminal, ellipsoidal and nearly spherical spores.

IMAGE

Photomicrographs of sporangia and vegetative cells of the type strains of sp. nov. (a), sp. nov. (b) and sp. nov. (c). Bars, 2 µm. In (a), sporangia are swollen with subterminal, ellipsoidal and spherical spores. In (b), rods and coccoid rods form sporangia that are swollen with ellipsoidal spores. In (c), sporangia are swollen by terminal, ellipsoidal and nearly spherical spores.

IMAGE

Photomicrographs of sporangia and vegetative cells of the type strains of sp. nov. (a), sp. nov. (b) and sp. nov. (c). Bars, 2 µm. In (a), sporangia are swollen with subterminal, ellipsoidal and spherical spores. In (b), rods and coccoid rods form sporangia that are swollen with ellipsoidal spores. In (c), sporangia are swollen by terminal, ellipsoidal and nearly spherical spores.

IMAGE

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error