1887

Abstract

A novel moderately thermophilic, organotrophic, microaerophilic, facultatively chemolithotrophic bacterium, designated strain 506, was isolated from a deep-sea hydrothermal vent site at 13°N in the East Pacific Rise. Cells were Gram-negative, non-motile rods. The organism grew in the temperature range 40–68 °C, with an optimum at 60 °C, and in the pH range 5·5–8·4, with an optimum around pH 7·5. The NaCl concentration for growth was in the range 10–50 g l, with an optimum at 30 g l. Strain 506 grew chemoorganoheterotrophically with carbohydrates, proteinaceous substrates, organic acids and alcohols using oxygen or nitrate as electron acceptor. Alternatively, strain 506 was able to grow lithoheterotrophically with molecular hydrogen as the energy source. The G+C content of the genomic DNA was 62·9 mol%. Phylogenetic analysis of the 16S rDNA sequence placed strain 506 in the family . On the basis of phenotypic and phylogenetic data, strain 506 (=DSM 14977=VKM B-2274) is proposed as the type strain of a novel species in a new genus, gen. nov., sp. nov.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02367-0
2003-05-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530747.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02367-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: reevaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Bonch-Osmolovskaya E. A., Sokolova T. G., Kostrikina N. A., Zavarzin G. A. 1990; Desulfurella acetivorans gen. nov. and sp. nov – a new thermophilic sulfur-reducing eubacterium. Arch Microbiol 153:151–155 [CrossRef]
    [Google Scholar]
  3. Brian B. L., Gardner E. W. 1968; A simple procedure for detecting the presence of cyclopropane fatty acids in bacterial lipids. Appl Microbiol 16:549–552
    [Google Scholar]
  4. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus , an extreme thermophile. J Bacteriol 104:509–517
    [Google Scholar]
  5. Brock T. D., Freeze H. 1969; Thermus aquaticus gen. n. and sp. n. a nonsporulating extreme thermophile. J Bacteriol 98:289–297
    [Google Scholar]
  6. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  7. Chung A. P., Rainey F., Nobre M. F., Burghardt J., Da Costa M. S. 1997; Meiothermus cerbereus sp. nov., a new slightly thermophilic species with high levels of 3-hydroxy fatty acids. Int J Syst Bacteriol 47:1225–1230 [CrossRef]
    [Google Scholar]
  8. Da Costa M. S., Rainey F. A. 2001; Family I. Thermaceae fam. nov. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol 1The Archaea and the Deeply Branching and Phototrophic Bacteria pp 403–404Edited by Garrity G. M. New York: Springer;
    [Google Scholar]
  9. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  10. Donato M. M., Seleiro E. A., Da Costa M. S. 1990; Polar lipid and fatty acid composition of strains of the genus Thermus . Syst Appl Microbiol 13:234–239 [CrossRef]
    [Google Scholar]
  11. Donato M. M., Seleiro E. A., Da Costa M. S. 1991; Polar lipid and fatty acid composition of strains of Thermus ruber . Syst Appl Microbiol 14:235–239 [CrossRef]
    [Google Scholar]
  12. Embley T. M., O'Donnell A. G., Wait R., Rostron J. 1987; Lipid and cell wall amino acid composition in the classification of members of the genus Deinococcus . Syst Appl Microbiol 10:20–27 [CrossRef]
    [Google Scholar]
  13. Felsenstein J. 1993 phylip: Phylogeny inference package, version 3.5.1. Distributed by the author Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  14. Ferreira A. C., Nobre M. F., Rainey F. A., Silva M. T., Wait R., Burghardt J., Chung A. P., Da Costa M. S. 1997; Deinococcus geothermalis sp. nov. and Deinococcus murrayi sp. nov., two extremely radiation-resistant and slightly thermophilic species from hot springs. Int J Syst Bacteriol 47:939–947 [CrossRef]
    [Google Scholar]
  15. Hensel R., Demharter W., Kandler O., Kroppenstedt R. M., Stackebrandt E. 1986; Chemotaxonomic and molecular-genetic studies of the genus Thermus : evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus . Int J Syst Bacteriol 36:444–453 [CrossRef]
    [Google Scholar]
  16. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  17. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  18. Miroshnichenko M. L., Gongadze G. A., Lysenko A. M., Bonch-Osmolovskaya E. A. 1994; Desulfurella multipotens sp. nov., a new sulfur-respiring thermophilic eubacterium from Raoul Island (Kermadec archipelago, New Zealand). Arch Microbiol 161:88–93
    [Google Scholar]
  19. Miroshnichenko M. L., Kostrikina N. A., Chernyh N. A., Pimenov N. V., Tourova T. P., Antipov A. N., Spring S., Stackebrandt E., Bonch-Osmolovskaya E. A. 2003; Caldithrix abyssi gen. nov. sp. nov. a nitrate-reducing, thermophilic, anaerobic bacterium isolated from a Mid-Atlantic Ridge hydrothermal vent, represents a novel bacterial lineage. Int J Syst Evol Microbiol 53:323–329 [CrossRef]
    [Google Scholar]
  20. Nichols P. D., Guckert J. B., White D. C. 1986; Determination of monounsaturated fatty acid double-bond position and geometry for microbial monocultures and complex consortia by capillary GC-MS of their dimethyl disulphide adducts. J Microbiol Methods 5:49–55 [CrossRef]
    [Google Scholar]
  21. Nobre M. F., Trüper H. G., Da Costa M. S. et al. 1996; Transfer of Thermus ruber (Loginova, et al. 1984), Thermus silvanus (Tenreiro et al, 1995), and Thermus chliarophilus (Tenreiro et al. 1995) to Meiothermus gen. nov. as Meiothermus ruber comb. nov., Meiothermus silvanus comb. nov., and Meiothermus chliarophilus comb. nov., respectively, and emendation of the genus Thermus . Int J Syst Bacteriol 46:604–606 [CrossRef]
    [Google Scholar]
  22. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  23. Sako Y., Nakagawa S., Takai K., Horikoshi K. 2003; Marinithermus hydrothermalis gen. nov., sp. nov., a strictly aerobic, thermophilic bacterium from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 53:59–65 [CrossRef]
    [Google Scholar]
  24. Skirnisdottir S., Hreggvidsson G. O., Holst O., Kristjansson J. K. 2001; Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus . Extremophiles 5:45–51 [CrossRef]
    [Google Scholar]
  25. Strömpl C., Tindall B. J., Jarvis G. N., Lünsdorf H., Moore E. R. B., Hippe H. 1999; A re-evaluation of the taxonomy of the genus Anaerovibrio , with the reclassification of Anaerovibrio glycerini as Anaerosinus glycerini gen. nov., comb. nov., and Anaerovibrio burkinabensis as Anaeroarcus burkinensis [corrig.] gen. nov., comb. nov. Int J Syst Bacteriol 491861–1872 [CrossRef]
    [Google Scholar]
  26. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  27. Tindall B. J. 1990a; A comparative study of the lipid composition of Halobacterium saccharovorum from various sources. Syst Appl Microbiol 13:128–130 [CrossRef]
    [Google Scholar]
  28. Tindall B. J. 1990b; Lipid composition of Halobacterium lacusprofundi . FEMS Microbiol Lett 66:199–202 [CrossRef]
    [Google Scholar]
  29. Williams R. A. D., Da Costa M. S. 1992; The genus Thermus and related microorganisms. In The Prokaryotes , 2nd edn. vol 1 pp 3746–3751Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  30. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2888
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02367-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02367-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error