1887

Abstract

A novel, Gram-stain-positive bacterial strain, Mer 29717, was isolated from the branchia (gills) of a Japanese codling, , collected from bottom waters of Suruga Bay in Shizuoka, Japan. Phylogenetic analysis based on 16S rRNA gene sequences indicated that this strain represents a distinct lineage within the family and was related most closely to members of the genera and . It shared highest 16S rRNA gene sequence similarity (95.1 %) with YIM 45900. Strain Mer 29717 contained MK-8(H) and MK-8(H) as menaquinones, and iso-C, C, C -9, C, C -9 and C -10 were the major cellular fatty acids. The cell-wall peptidoglycan of strain Mer 29717 was composed of -Lys, -Ser, -Ser, Gly, -Glu and -Ala. Polar lipids were phosphatidylinositol, phosphatidylglycerol, diphosphatidylglycerol and one unidentified phospholipid. Mycolic acids were not detected. The G+C content of the DNA of strain Mer 29717 was 68 mol%. On the basis of differential chemotaxonomic, physiological and biochemical data, strain Mer 29717 is considered to represent a novel species of a new genus, for which the name gen. nov., sp. nov. is proposed. The type strain of is Mer 29717 ( = NBRC 106121  = DSM 22951).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023648-0
2011-05-01
2020-09-24
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/5/1195.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023648-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410[PubMed] [CrossRef]
    [Google Scholar]
  2. Ara I., Yamamura H., Tsetseg B., Daram D., Ando K. 2010; Luteipulveratus mongoliensis gen. nov., sp. nov., an actinobacterial taxon in the family Dermacoccaceae . Int J Syst Evol Microbiol 60:574–579 [CrossRef]
    [Google Scholar]
  3. Becker B., Lechevalier M. P., Gordon R. E., Lechevalier H. A. 1964; Rapid differentiation between Nocardia and Streptomyces by paper chromatography of whole-cell hydrolysates. Appl Microbiol 12:421–423[PubMed]
    [Google Scholar]
  4. Chun J., Lee J. H., Jung Y., Kim M., Kim S., Kim B. K., Lim Y.-W. 2007; EzTaxon: a web-based tool for the identification of prokaryotes based on 16S ribosomal RNA gene sequences. Int J Syst Evol Microbiol 57:2259–2261 [CrossRef][PubMed]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef][PubMed]
    [Google Scholar]
  6. Felsenstein J. 1985; Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–789 [CrossRef]
    [Google Scholar]
  7. Fenical W., Jensen P. R. 2006; Developing a new resource for drug discovery: marine actinomycete bacteria. Nat Chem Biol 2:666–673 [CrossRef][PubMed]
    [Google Scholar]
  8. Fiedler H. P., Bruntner C., Bull A. T., Ward A. C., Goodfellow M., Potterat O., Puder C., Mihm G. 2005; Marine actinomycetes as a source of novel secondary metabolites. Antonie van Leeuwenhoek 87:37–42 [CrossRef][PubMed]
    [Google Scholar]
  9. Fitch W. M. 1971; Towards defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [CrossRef]
    [Google Scholar]
  10. Groth I., Schumann P., Rainey F. A., Martin K., Schuetze B., Augsten K. 1997; Demetria terragena gen. nov., sp. nov., a new genus of actinomycetes isolated from compost soil. Int J Syst Bacteriol 47:1129–1133 [CrossRef][PubMed]
    [Google Scholar]
  11. Hayakawa M., Nonomura H. 1987; Humic acid-vitamin agar, a new medium for the selective isolation of soil actinomycetes. J Ferment Technol 65:501–509 [CrossRef]
    [Google Scholar]
  12. Jensen P. R., Mincer T. J., Williams P. G., Fenical W. 2005; Marine actinomycete diversity and natural product discovery. Antonie van Leeuwenhoek 87:43–48 [CrossRef][PubMed]
    [Google Scholar]
  13. Kämpfer P., Martin K., Schäfer J., Schumann P. 2009; Kytococcus aerolatus sp. nov., isolated from indoor air in a room colonized with moulds. Syst Appl Microbiol 32:301–305 [CrossRef][PubMed]
    [Google Scholar]
  14. Katayama-Fujiwara Y., Komatsu Y., Kuraishi H., Kaneko T. 1984; Estimation of DNA base composition by high performance liquid chromatography of its nuclease P1 hydrolysate. Agric Biol Chem 48:3169–3172 [CrossRef]
    [Google Scholar]
  15. Katoh K., Suzuki-Onozaki A., Ohta T., Ebine H., Kumagai M., Fujimoto M., Kuninaka A. 1983; Microbiological identification of single cell proteins based on DNA-GC contents. Part II. Chemical determination of DNA-GC contents. Rept Natl Food Res Inst 43:79–89
    [Google Scholar]
  16. Kawasaki Y., Nozawa Y., Harada K. 2007; Elution behavior of diaminopimelic acid and related diamino acids using the advanced Marfey’s method. J Chromatogr A 1160:246–253 [CrossRef][PubMed]
    [Google Scholar]
  17. Kimura M. 1980; A simple method for estimating evolutionary rates of base substitutions through comparative studies of nucleotide sequences. J Mol Evol 16:111–120 [CrossRef][PubMed]
    [Google Scholar]
  18. Lam K. S. 2006; Discovery of novel metabolites from marine actinomycetes. Curr Opin Microbiol 9:245–251 [CrossRef][PubMed]
    [Google Scholar]
  19. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586[PubMed]
    [Google Scholar]
  20. Minnikin D. E., Alshamaony L., Goodfellow M. J. 1975; Differentiation of Mycobacterium, Nocardia, and related taxa by thin-layer chromatographic analysis of whole-organism methanolysates. J Gen Microbiol 88:200–204[PubMed] [CrossRef]
    [Google Scholar]
  21. Minnikin D. E., O’Donnell A. G., Goodfellow M. J., Alderson G., Athalye M., Schaal A., Parlett J. H. 1984; An integrated procedure for the extraction of bacterial isoprenoid quinones and polar lipids. J Microbiol Methods 2:233–241 [CrossRef]
    [Google Scholar]
  22. Pathom-aree W., Nogi Y., Sutcliffe I. C., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M. 2006a; Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 56:1233–1237 [CrossRef][PubMed]
    [Google Scholar]
  23. Pathom-aree W., Nogi Y., Ward A. C., Horikoshi K., Bull A. T., Goodfellow M. 2006b; Dermacoccus barathri sp. nov. and Dermacoccus profundi sp. nov., novel actinomycetes isolated from deep-sea mud of the Mariana Trench. Int J Syst Evol Microbiol 56:2303–2307 [CrossRef][PubMed]
    [Google Scholar]
  24. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  25. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 34:407–477
    [Google Scholar]
  26. Shirling E. B., Gottlieb D. 1966; Methods for characterization of Streptomyces species. Int J Syst Bacteriol 16:313–340 [CrossRef]
    [Google Scholar]
  27. Stackebrandt E., Schumann P. 2000; Description of Bogoriellaceae fam. nov., Dermacoccaceae fam. nov., Rarobacteraceae fam. nov. and Sanguibacteraceae fam. nov. and emendation of some families of the suborder Micrococcineae . Int J Syst Evol Microbiol 50:1279–1285[PubMed] [CrossRef]
    [Google Scholar]
  28. Stackebrandt E., Koch C., Gvozdiak O., Schumann P. 1995; Taxonomic dissection of the genus Micrococcus: Kocuria gen. nov., Nesterenkonia gen. nov., Kytococcus gen. nov., Dermacoccus gen. nov., and Micrococcus Cohn 1872 gen. emend.. Int J Syst Bacteriol 45:682–692 [CrossRef][PubMed]
    [Google Scholar]
  29. Tamura K., Dudley J., Nei M., Kumar S. 2007; mega4: molecular evolutionary genetics analysis (mega) software version 4.0. Mol Biol Evol 24:1596–1599 [CrossRef][PubMed]
    [Google Scholar]
  30. Tang S.-K., Wu J.-Y., Wang Y., Schumann P., Li W.-J. 2010; Yimella lutea gen. nov., sp. nov., a novel actinobacterium of the family Dermacoccaceae . Int J Syst Evol Microbiol 60:659–663 [CrossRef][PubMed]
    [Google Scholar]
  31. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  32. Uchida K., Aida K. 1977; Acyl type of bacterial cell wall: its simple identification by colorimetric method. J Gen Appl Microbiol 23:249–260 [CrossRef]
    [Google Scholar]
  33. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703[PubMed]
    [Google Scholar]
  34. Yang X., Zhao Y., Wang Q., Wang H., Mei Q. 2005; Analysis of the monosaccharide components in Angelica polysaccharides by high performance liquid chromatography. Anal Sci 21:1177–1180 [CrossRef][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023648-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023648-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Most cited this month Most Cited RSS feed

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error