1887

Abstract

A novel thermophilic marine bacterium, designated strain T1, was isolated from a deep-sea hydrothermal vent chimney sample collected from the Suiyo Seamount in the Izu-Bonin Arc, Japan, at a depth of 1385 m. Cells of strain T1 were rod-shaped, occurring in pairs or filamentous, and stained Gram-negative. Growth was observed between 50·0 and 72·5 °C (optimum 67·5 °C; 30 min doubling time) and at pH 6·25–7·75 (optimum pH 7·00). The isolate absolutely required NaCl, at a concentration of 0·5–4·5 % (optimum 3·0 %). It was a strictly aerobic heterotroph capable of growing solely on complex organic substrates such as yeast extract, tryptone and Casamino acids, utilizing glutamate, proline, serine, cellobiose, trehalose, sucrose, acetate and pyruvate as complementary substrates. The G+C content of the genomic DNA was 68·6 mol%. The 16S rRNA gene sequence of the isolate was most similar to those from members of the genus , but the isolate was distantly related to them at the genus level (<90 %). In addition, phylogenetic analysis indicated that the isolate was on a novel lineage, deeply branched prior to divergence of the genus . On the basis of phylogenetic analysis and physiological traits of the isolate, it should be described as a member of a novel genus distinct from the previously described genus . The name gen. nov. is proposed, with gen. nov., sp. nov. as the type species. The type strain of gen. nov., sp. nov. is strain T1 (=JCM 11576 =DSM 14884).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02364-0
2003-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530059.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02364-0&mimeType=html&fmt=ahah

References

  1. Balch W. E., Fox G. E., Magrum L. J., Woese C. R., Wolfe R. S. 1979; Methanogens: re-evaluation of a unique biological group. Microbiol Rev 43:260–296
    [Google Scholar]
  2. Blöchl E., Rachel R., Burggraf S., Hafenbradl D., Jannasch H. W., Stetter K. O. 1997; Pyrolobus fumarii , gen. and sp. nov., represents a novel group of archaea, extending the upper temperature limit for life to 113 °C. Extremophiles 1:14–21 [CrossRef]
    [Google Scholar]
  3. Brock T. D., Boylen K. L. 1973; Presence of thermophilic bacteria in laundry and domestic hot-water heaters. Appl Microbiol 25:72–76
    [Google Scholar]
  4. Brock T. D., Edwards M. R. 1970; Fine structure of Thermus aquaticus , an extreme thermophile. J Bacteriol 104:509–517
    [Google Scholar]
  5. Brock T. D., Freeze H. 1969; Thermus aquaticus gen. n., and sp. n. a nonsporulating extreme thermophile. J Bacteriol 98:289–297
    [Google Scholar]
  6. Brock T. D., Brock K. M., Belly R. T., Weiss R. L. 1972; Sulfolobus : a new genus of sulfur-oxidizing bacteria living at low pH and high temperature. Arch Mikrobiol 84:54–68 [CrossRef]
    [Google Scholar]
  7. Burggraf S., Jannasch H. W., Nicolaus B., Stetter K. O. 1990; Archaeoglobus profundus , sp. nov., represents a new species within the sulfate-reducing archaebacteria. Syst Appl Microbiol 13:24–28 [CrossRef]
    [Google Scholar]
  8. Chung A. P., Rainey F. A., Valente M., Nobre M. F., da Costa M. S. 2000; Thermus igniterrae sp. nov. and Thermus antranikianii sp. nov., two new species from Iceland. Int J Syst Evol Microbiol 50:209–217 [CrossRef]
    [Google Scholar]
  9. DeLong E. F. 1992; Archaea in coastal marine environments. Proc Natl Acad Sci U S A 89:5685–5689 [CrossRef]
    [Google Scholar]
  10. Duffield M., Cossar D. 1995; Enzymes of Thermus and their properties. In Thermus Species pp 93–141Edited by Sharp R., Williams R. New York: Plenum Press;
    [Google Scholar]
  11. Gillis M., Vandamme P., De Vos P., Swings J., Kersters K. 2001; Polyphasic taxonomy. In Bergey's Manual of Systematic Bacteriology , 2nd edn. pp 43–48Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  12. Gonzales J. M., Kato C., Horikoshi K. 1995; Thermococcus peptonophilus sp. nov., a fast-growing, extremely thermophilic archaebacterium isolated from deep-sea hydrothermal vents. Arch Microbiol 164:159–164 [CrossRef]
    [Google Scholar]
  13. Grogan D., Palm P., Zillig W. 1990; Isolate B12, which harbours a virus-like element, represents a new species of the archaebacterial genus Sulfolobus , Sulfolobus shibatae , sp. nov. Arch Microbiol 154:594–599
    [Google Scholar]
  14. Harmsen H. J. M., Prieur D., Jeanthon C. 1997; Distribution of microorganisms in deep-sea hydrothermal vent chimneys investigated by whole-cell hybridization and enrichment culture of thermophilic subpopulations. Appl Environ Microbiol 63:2876–2883
    [Google Scholar]
  15. Hensel R., Demharter W., Kandler O., Kroppenstedt R. M., Stackebrandt E. 1986; Chemotaxonomic and molecular-genetic studies of the genus Thermus : evidence for a phylogenetic relationship of Thermus aquaticus and Thermus ruber to the genus Deinococcus . Int J Syst Bacteriol 36:444–453 [CrossRef]
    [Google Scholar]
  16. Hjörleifsdóttir S., Kristjánsson J. K., Alfredsson G. A. 1989; Thermophilic organisms in submarine freshwater hot springs in Iceland. In Microbiology of Extreme Environments and its Potential for Biotechnology . pp 109–112Edited by da Costa M. S., Duarte J. C., Williams R. A. D. London: Elsevier;
  17. Holden J. F., Takai K., Summit M., Bolton S., Zyskowski J., Baross J. A. 2001; Diversity among three novel groups of hyperthermophilic deep-sea Thermococcus species from three sites in the northeastern Pacific Ocean. FEMS Microbiol Ecol 36:51–60 [CrossRef]
    [Google Scholar]
  18. Huber R., Wilharm T., Huber D.7 other authors 1992; Aquifex pyrophilus gen. nov., sp. nov. represents a novel group of marine hyperthermophilic hydrogen-oxidizing bacteria. Syst Appl Microbiol 15:340–351 [CrossRef]
    [Google Scholar]
  19. Huber H., Jannasch H. W., Rachel R., Fuchs T., Stetter K. O. 1997; Archaeoglobus veneficus sp. nov., a novel facultative chemolithoautotrophic hyperthermophilic sulfite reducer, isolated from abyssal black smoker. Syst Appl Microbiol 20:374–380 [CrossRef]
    [Google Scholar]
  20. Hudson J. A., Morgan H. W., Daniel R. M. 1986; A numerical classification of some Thermus isolates. J Gen Microbiol 132:531–540
    [Google Scholar]
  21. Jannasch H. W., Wirsen C. O., Molyneaux S. J., Langworthy T. A. 1988; Extremely thermophilic fermentative archaebacteria of the genus Desulfurococcus from deep-sea hydrothermal vents. Appl Environ Microbiol 54:1203–1209
    [Google Scholar]
  22. Kieft T. L., Fredrickson J. K., Onstott T. C.7 other authors 1999; Dissimilatory reduction of Fe(III) and other electron acceptors by a Thermus isolate. Appl Environ Microbiol 65:1214–1221
    [Google Scholar]
  23. Kristjánsson J. K., Alfredsson G. A. 1983; Distribution of Thermus spp. in Icelandic hot springs and a thermal gradient. Appl Environ Microbiol 45:1785–1789
    [Google Scholar]
  24. Kristjánsson J. K., Hreggvidsson G. O., Alfredsson G. A. 1986; Isolation of halotolerant Thermus spp. from submarine hot springs in Iceland. Appl Environ Microbiol 52:1313–1316
    [Google Scholar]
  25. Lauerer G., Kristjánsson J. K., Langworthy T. A., König H., Stetter K. O. 1986; Methanothermus sociabilis sp. nov., a second species within the Methanothermaceae growing at 97 °C. Syst Appl Microbiol 8:100–105 [CrossRef]
    [Google Scholar]
  26. Maidak B. L., Cole J. R., Lilburn T. G.7 other authors 2001; The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  27. Manaia C. M., da Costa M. S. 1991; Characterization of halotolerant Thermus isolates from shallow marine hot springs on S. Miguel, Azores. J Gen Microbiol 137:2643–2648 [CrossRef]
    [Google Scholar]
  28. Marteinsson V. T., Birrien J. L., Kristjánsson J. K., Prieur D. 1995; First isolation of thermophilic aerobic nonsporulating heterotrophic bacteria from deep-sea hydrothermal vents. FEMS Microbiol Ecol 18:163–174 [CrossRef]
    [Google Scholar]
  29. Marteinsson V. T., Birrien J. L., Raguénès G., da Costa M. S., Prieur D. 1999; Isolation and characterization of Thermus thermophilus Gy1211 from a deep-sea hydrothermal vent. Extremophiles 3:247–251 [CrossRef]
    [Google Scholar]
  30. Moyer C. L., Dobbs F. C., Karl D. M. 1994; Estimation of diversity and community structure through restriction fragment length polymorphism distribution analysis of bacterial 16S rRNA genes from a microbial mat at an active, hydrothermal vent system, Loihi Seamount Hawaii. Appl Environ Microbiol 60:871–879
    [Google Scholar]
  31. Moyer C. L., Dobbs F. C., Karl D. M. 1995; Phylogenetic diversity of the bacterial community from a microbial mat at an active, hydrothermal vent system, Loihi Seamount Hawaii. Appl Environ Microbiol 61:1555–1562
    [Google Scholar]
  32. Pask-Hughes R. A., Williams R. A. D. 1975; Extremely thermophilic Gram-negative bacteria from hot tap water. J Gen Microbiol 88:321–328 [CrossRef]
    [Google Scholar]
  33. Pley U., Schipka J., Gambacorta A., Jannasch H. W., Fricke H., Rachel R., Stetter K. O. 1991; Pyrodictium abyssi , sp. nov., represents a novel heterotrophic marine archaeal hyperthermophile growing at 110 °C. Syst Appl Microbiol 14:245–253 [CrossRef]
    [Google Scholar]
  34. Porter K. G., Feig Y. S. 1980; The use of DAPI for identifying and counting microflora. Limnol Oceanogr 25:943–948 [CrossRef]
    [Google Scholar]
  35. Prado A., da Costa M. S., Madeira V. M. C. 1988; Effect of growth temperature on the lipid composition of two strains of Thermus sp. J Gen Microbiol 134:1653–1660
    [Google Scholar]
  36. Reysenbach A.-L., Banta A. B., Boone D. R., Cary S. C., Luther G. W. 2000a; Microbial essentials at hydrothermal vents. Nature 404:835 [CrossRef]
    [Google Scholar]
  37. Reysenbach A.-L., Longnecker K., Kirshtein J. 2000b; Novel bacterial and archaeal lineages from an in situ growth chamber deployed at a Mid-Atlantic Ridge hydrothermal vent. Appl Environ Microbiol 66:3798–3806 [CrossRef]
    [Google Scholar]
  38. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  39. Sako Y., Nomura N., Uchida A., Ishida Y., Morii H., Koga Y., Hoaki T., Maruyama T. 1996a; Aeropyrum pernix gen. nov., sp. nov. a novel aerobic hyperthermophilic archaeon growing at temperatures up to 100 °C. Int J Syst Bacteriol 46:1070–1077 [CrossRef]
    [Google Scholar]
  40. Sako Y., Takai K., Ishida Y., Uchida A., Katayama Y. 1996b; Rhodothermus obamensis sp. nov., a modern lineage of extremely thermophilic marine bacteria. Int J Syst Bacteriol 46:1099–1104 [CrossRef]
    [Google Scholar]
  41. Sako Y., Nunoura T., Uchida A. 2001; Pyrobaculum oguniense sp. nov., a novel facultatively aerobic and hyperthermophilic archaeon growing at up to 97 °C. Int J Syst Evol Microbiol 51:303–309
    [Google Scholar]
  42. Sharp R., Cossar D., Williams R. 1995; Physiology and metabolism of Thermus . In Thermus Species pp 67–91Edited by Sharp R., Williams R. New York: Plenum Press;
    [Google Scholar]
  43. Skirnisdottir S., Hreggvidsson G. O., Holst O., Kristjánsson J. K. 2001; Isolation and characterization of a mixotrophic sulfur-oxidizing Thermus scotoductus . Extremophiles 5:45–51 [CrossRef]
    [Google Scholar]
  44. Takai K., Horikoshi K. 1999; Genetic diversity of archaea in deep-sea hydrothermal vent environments. Genetics 152:1285–1297
    [Google Scholar]
  45. Takai K., Horikoshi K. 2000; Thermosipho japonicus sp. nov., an extremely thermophilic bacterium isolated from a deep-sea hydrothermal vent in Japan. Extremophiles 4:9–17 [CrossRef]
    [Google Scholar]
  46. Takai K., Sako Y. 1999; A molecular view of archaeal diversity in marine and terrestrial hot water environments. FEMS Microbiol Ecol 28:177–188 [CrossRef]
    [Google Scholar]
  47. Takai K., Sugai A., Itoh T., Horikoshi K. 2000; Palaeococcus ferrophilus gen. nov., sp. nov., a barophilic, hyperthermophilic archaeon from a deep-sea hydrothermal vent chimney. Int J Syst Evol Microbiol 50:489–500 [CrossRef]
    [Google Scholar]
  48. Takai K., Komatsu T., Inagaki F., Horikoshi K. 2001; Distribution of archaea in a black smoker chimney structure. Appl Environ Microbiol 67:3618–3629 [CrossRef]
    [Google Scholar]
  49. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  50. Tamaoka J., Katayama-Fujiwara Y., Kuraishi H. 1983; Analysis of bacterial menaquinone mixtures by high-performance liquid chromatography. J Appl Bacteriol 54:31–36 [CrossRef]
    [Google Scholar]
  51. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [CrossRef]
    [Google Scholar]
  52. Wery N., Lesongeur F., Pignet P., Derennes V., Cambon-Bonavita M.-A., Godfroy A., Barbier G. 2001; Marinitoga camini gen. nov., sp. nov. a rod-shaped bacterium belonging to the order Thermotogales , isolated from a deep-sea hydrothermal vent. Int J Syst Evol Microbiol 51:495–504
    [Google Scholar]
  53. Williams R. A. D., da Costa M. S. 1992; The genus Thermus and related microorganisms. In The Prokaryotes , 2nd edn. pp 3745–3753Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K.-H. New York: Springer;
    [Google Scholar]
  54. Williams R. A. D., Smith K. E., Welch S. G., Micallef J. 1996; Thermus oshimai sp. nov., isolated from hot springs in Portugal, Iceland, and the Azores, and comment on the concept of a limited geographical distribution of Thermus species. Int J Syst Bacteriol 46:403–408 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02364-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02364-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error