1887

Abstract

The aim of this study was to evaluate the utility of a real-time PCR platform to estimate the DNA G+C content (mol%) and DNA–DNA hybridization (DDH) values in the genus . In total, nine vibrio strains were used to determine the relationship between genomic DNA G+C content and (°C). The and HPLC datasets fit a linear regression curve with a significant correlation coefficient, corroborating that this methodology has a high correlation with the standard methodology based on HPLC (R = 0.94). Analysis of 31 pairs of vibrios provided a wide range of Δ values, varying between 0.72 and 12.5 °C. Pairs corresponding to strains of the same species or strains from sister species showed the lowest Δ values. For instance, the Δ of the sister species LMG 4044 and LMG 11216 was 5.2 °C, whereas the Δ of LMG 20984 and LMG 20536 was 8.75 °C. The mean Δ values corresponding to pairs of strains with DDH values lower than 60 % or higher than 80 % were, respectively, 8.29 and 2.21 °C (significant difference, <0.01). The high correlation between DDH values obtained in previous studies and the Δ values (R = 0.7344) indicates that the fluorimetric methodology is a reliable alternative for the estimation of both DNA G+C content and Δ in vibrios. We suggest that strains of the same species will have less than 4 °C Δ . The use of a real-time PCR platform represents a valuable alternative for the development of the taxonomy of vibrios.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023606-0
2011-10-01
2020-01-21
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/10/2379.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023606-0&mimeType=html&fmt=ahah

References

  1. Baumann P. , Schubert R. H. W. . ( 1984; ). Family II. Vibrionaceae Véron 1965, 5245AL . . In Bergey’s Manual of Systematic Bacteriology, vol. 1, pp. 516–517. Edited by Krieg N. R. , Holt J. G. . . Baltimore, MD:: Williams & Wilkins;.
    [Google Scholar]
  2. Ben-Haim Y. , Thompson F. L. , Thompson C. C. , Cnockaert M. C. , Hoste B. , Swings J. , Rosenberg E. . ( 2003; ). Vibrio coralliilyticus sp. nov., a temperature-dependent pathogen of the coral Pocillopora damicornis . . Int J Syst Evol Microbiol 53:, 309–315. [CrossRef] [PubMed]
    [Google Scholar]
  3. Brenner D. J. , Hickman-Brenner F. , Lee J. V. , Steigerwalt A. G. , Fanning G. R. , Hollis D. G. , Farmer J. J. , Weaver R. E. , Joseph S. W. , Seidler R. J. . ( 1983; ). Vibrio furnissii (formerly aerogenic biogroup of Vibrio fluvialis), a new species isolated from human feces and the environment. . J Clin Microbiol 18:, 816–824.
    [Google Scholar]
  4. Chimetto L. A. , Brocchi M. , Gondo M. , Thompson C. C. , Gomez-Gil B. , Thompson F. L. . ( 2009; ). Genomic diversity of vibrios associated with the Brazilian coral Mussismilia hispida and its sympatric zoanthids (Palythoa caribaeorum, Palythoa variabilis and Zoanthus solanderi). . J Appl Microbiol 106:, 1818–1826. [CrossRef] [PubMed]
    [Google Scholar]
  5. Chimetto L. A. , Cleenwerck I. , Thompson C. C. , Brocchi M. , Willems A. , de Vos P. , Thompson F. L. . ( 2010; ). Photobacterium jeanii sp. nov., isolated from corals and zoanthids. . Int J Syst Evol Microbiol 60:, 2843–2848. [CrossRef]
    [Google Scholar]
  6. Coenye T. , Vandamme P. , Govan J. R. W. , LiPuma J. J. . ( 2001; ). Taxonomy and identification of the Burkholderia cepacia complex. . J Clin Microbiol 39:, 3427–3436. [CrossRef] [PubMed]
    [Google Scholar]
  7. Colwell R. R. . ( 1970; ). Polyphasic taxonomy of the genus Vibrio: numerical taxonomy of Vibrio cholerae, Vibrio parahaemolyticus, and related Vibrio species. . J Bacteriol 104:, 410–433.[PubMed]
    [Google Scholar]
  8. Davis B. R. , Fanning G. R. , Madden J. M. , Steigerwalt A. G. , Bradford H. B. Jr , Smith H. L. Jr , Brenner D. J. . ( 1981; ). Characterization of biochemically atypical Vibrio cholerae strains and designation of a new pathogenic species, Vibrio mimicus . . J Clin Microbiol 14:, 631–639.[PubMed]
    [Google Scholar]
  9. De Ley J. , Cattoir H. , Reynaerts A. . ( 1970; ). The quantitative measurement of DNA hybridization from renaturation rates. . Eur J Biochem 12:, 133–142. [CrossRef] [PubMed]
    [Google Scholar]
  10. Ezaki T. , Hashimoto Y. , Yabuuchi E. . ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. . Int J Syst Bacteriol 39:, 224–229. [CrossRef]
    [Google Scholar]
  11. Garrity, G. M., Bell, J. A. & Lilburn, T. G. (2004). Taxonomic outline of the Procaryotes. In Bergey’s Manual of Systematic Bacteriology, 2nd edn, Release 5.0. New York: Springer.
  12. Gomez-Gil B. , Soto-Rodríguez S. , García-Gasca A. , Roque A. , Vazquez-Juarez R. , Thompson F. L. , Swings J. . ( 2004a; ). Molecular identification of Vibrio harveyi-related isolates associated with diseased aquatic organisms. . Microbiology 150:, 1769–1777. [CrossRef] [PubMed]
    [Google Scholar]
  13. Gomez-Gil B. , Thompson F. L. , Thompson C. C. , Garcia-Gasca A. , Roque A. , Swings J. . ( 2004b; ). Vibrio hispanicus sp. nov., isolated from Artemia sp. and sea water in Spain. . Int J Syst Evol Microbiol 54:, 261–265. [CrossRef] [PubMed]
    [Google Scholar]
  14. Gonzalez J. M. , Saiz-Jimenez C. . ( 2002; ). A fluorimetric method for the estimation of G+C mol% content in microorganisms by thermal denaturation temperature. . Environ Microbiol 4:, 770–773. [CrossRef] [PubMed]
    [Google Scholar]
  15. Gonzalez J. M. , Saiz-Jimenez C. . ( 2005; ). A simple fluorimetric method for the estimation of DNA–DNA relatedness between closely related microorganisms by thermal denaturation temperatures. . Extremophiles 9:, 75–79. [CrossRef] [PubMed]
    [Google Scholar]
  16. Goris J. , Suzuki K. , De Vos P. , Nakase T. , Kersters K. . ( 1998; ). Evaluation of a microplate DNA - DNA hybridization method compared with the initial renaturation method. . Can J Microbiol 44:, 1148–1153. [CrossRef]
    [Google Scholar]
  17. Guinebretière M. H. , Thompson F. L. , Sorokin A. , Normand P. , Dawyndt P. , Ehling-Schulz M. , Svensson B. , Sanchis V. , Nguyen-The C. et al. ( 2008; ). Ecological diversification in the Bacillus cereus Group. . Environ Microbiol 10:, 851–865. [CrossRef] [PubMed]
    [Google Scholar]
  18. Hedlund B. P. , Staley J. T. . ( 2001; ). Vibrio cyclotrophicus sp. nov., a polycyclic aromatic hydrocarbon (PAH)-degrading marine bacterium. . Int J Syst Evol Microbiol 51:, 61–66.[PubMed]
    [Google Scholar]
  19. Mellado E. , Moore E. R. B. , Nieto J. J. , Ventosa A. . ( 1996; ). Analysis of 16S rRNA gene sequences of Vibrio costicola strains: description of Salinivibrio costicola gen. nov., comb. nov.. Int J Syst Bacteriol 46:, 817–821. [CrossRef] [PubMed]
    [Google Scholar]
  20. Pitcher D. G. , Saunders N. A. , Owen R. J. . ( 1989; ). Rapid extraction of bacterial genomic DNA with guanidium thiocyanate. . Lett Appl Microbiol 8:, 151–156. [CrossRef]
    [Google Scholar]
  21. Ritz K. , Griffiths B. S. , Torsvik V. L. , Hendriksen N. B. . ( 1997; ). Analysis of soil and bacterioplankton community DNA by melting profiles and reassociation kinetics. . FEMS Microbiol Lett 149:, 151–156. [CrossRef]
    [Google Scholar]
  22. Rosselló-Mora R. , Amann R. . ( 2001; ). The species concept for prokaryotes. . FEMS Microbiol Rev 25:, 39–67. [CrossRef] [PubMed]
    [Google Scholar]
  23. Sawabe T. , Sugimura I. , Ohtsuka M. , Nakano K. , Tajima K. , Ezura Y. , Christen R. . ( 1998; ). Vibrio halioticoli sp. nov., a non-motile alginolytic marine bacterium isolated from the gut of the abalone Haliotis discus hannai . . Int J Syst Bacteriol 48:, 573–580.[PubMed] [CrossRef]
    [Google Scholar]
  24. Stackebrandt E. , Frederiksen W. , Garrity G. M. , Grimont P. A. , Kämpfer P. , Maiden M. C. , Nesme X. , Rosselló-Mora R. , Swings J. et al. ( 2002; ). Report of the ad hoc committee for the re-evaluation of the species definition in bacteriology. . Int J Syst Evol Microbiol 52:, 1043–1047. [CrossRef] [PubMed]
    [Google Scholar]
  25. Tamaoka J. , Komagata K. . ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. . FEMS Microbiol Lett 25:, 125–128. [CrossRef]
    [Google Scholar]
  26. Thompson F. L. . ( 2003; ). Improved taxonomy of the family Vibrionaceae. PhD thesis, Ghent University, Ghent, Belgium..
  27. Thompson F. L. , Hoste B. , Thompson C. C. , Goris J. , Gomez-Gil B. , Huys L. , De Vos P. , Swings J. . ( 2002; ). Enterovibrio norvegicus gen. nov., sp. nov., isolated from the gut of turbot (Scophthalmus maximus) larvae: a new member of the family Vibrionaceae . . Int J Syst Evol Microbiol 52:, 2015–2022. [CrossRef] [PubMed]
    [Google Scholar]
  28. Thompson F. L. , Hoste B. , Vandemeulebroecke K. , Swings J. . ( 2003a; ). Reclassification of Vibrio hollisae as Grimontia hollisae gen. nov., comb. nov.. Int J Syst Evol Microbiol 53:, 1615–1617. [CrossRef] [PubMed]
    [Google Scholar]
  29. Thompson F. L. , Thompson C. C. , Vicente A. C. P. , Theophilo G. N. D. , Hofer E. , Swings J. . ( 2003b; ). Genomic diversity of clinical and environmental Vibrio cholerae strains isolated in Brazil between 1991 and 2001 as revealed by fluorescent amplified fragment length polymorphism analysis. . J Clin Microbiol 41:, 1946–1950. [CrossRef] [PubMed]
    [Google Scholar]
  30. Thompson F. L. , Li Y. , Gomez-Gil B. , Thompson C. C. , Hoste B. , Vandemeulebroecke K. , Rupp G. S. , Pereira A. , De Bem M. M. et al. ( 2003c; ). Vibrio neptunius sp. nov., Vibrio brasiliensis sp. nov. and Vibrio xuii sp. nov., isolated from the marine aquaculture environment (bivalves, fish, rotifers and shrimps). . Int J Syst Evol Microbiol 53:, 245–252. [CrossRef] [PubMed]
    [Google Scholar]
  31. Thompson F. L. , Thompson C. C. , Hoste B. , Vandemeulebroecke K. , Gullian M. , Swings J. . ( 2003; d). Vibrio fortis sp. nov. and Vibrio hepatarius sp. nov., isolated from aquatic animals and the marine environment. . Int J Syst Evol Microbiol 53:, 1495–1501. [CrossRef] [PubMed]
    [Google Scholar]
  32. Thompson F. L. , Thompson C. C. , Li Y. , Gomez-Gil B. , Vandenberghe J. , Hoste B. , Swings J. . ( 2003; e). Vibrio kanaloae sp. nov., Vibrio pomeroyi sp. nov. and Vibrio chagasii sp. nov., from sea water and marine animals. . Int J Syst Evol Microbiol 53:, 753–759. [CrossRef] [PubMed]
    [Google Scholar]
  33. Thompson F. L. , Thompson C. C. , Swings J. . ( 2003; f). Vibrio tasmaniensis sp. nov., isolated from Atlantic salmon (Salmo salar L.). . Syst Appl Microbiol 26:, 65–69. [CrossRef] [PubMed]
    [Google Scholar]
  34. Thompson F. L. , Gomez-Gil B. , Vasconcelos A. T. , Sawabe T. . ( 2007; ). Multilocus sequence analysis reveals that Vibrio harveyi and V. campbellii are distinct species. . Appl Environ Microbiol 73:, 4279–4285.[CrossRef]
    [Google Scholar]
  35. Thompson F. L. , Thompson C. C. , Vicente A. C. P. , Klose K. . ( 2010; ). Vibrio2009: the third international conference on the biology of vibrios. . Mol Microbiol 77:, 1065–1071.[CrossRef]
    [Google Scholar]
  36. Tindall B. J. , Rosselló-Móra R. , Busse H.-J. , Ludwig W. , Kämpfer P. . ( 2010; ). Notes on the characterization of prokaryote strains for taxonomic purposes. . Int J Syst Evol Microbiol 60:, 249–266. [CrossRef] [PubMed]
    [Google Scholar]
  37. Urbanczyk H. , Ast J. C. , Higgins M. J. , Carson J. , Dunlap P. V. . ( 2007; ). Reclassification of Vibrio fischeri, Vibrio logei, Vibrio salmonicida and Vibrio wodanis as Aliivibrio fischeri gen. nov., comb. nov., Aliivibrio logei comb. nov., Aliivibrio salmonicida comb. nov. and Aliivibrio wodanis comb. nov.. Int J Syst Evol Microbiol 57:, 2823–2829. [CrossRef] [PubMed]
    [Google Scholar]
  38. Vandamme P. , Pot B. , Gillis M. , de Vos P. , Kersters K. , Swings J. . ( 1996; ). Polyphasic taxonomy, a consensus approach to bacterial systematics. . Microbiol Rev 60:, 407–438.[PubMed]
    [Google Scholar]
  39. Willems A. , Doignon-Bourcier F. , Goris J. , Coopman R. , de Lajudie P. , De Vos P. , Gillis M. . ( 2001; ). DNA–DNA hybridization study of Bradyrhizobium strains. . Int J Syst Evol Microbiol 51:, 1315–1322.[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023606-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023606-0
Loading

Data & Media loading...

Supplements

List of strains used in the determination of Δ m values [ PDF] (40 KB)

PDF

Mean Δ m of the three DDH relatedness intervals. The grey zone of DDH and Δ m values is indicated as a grey bar. The intervals are arbitrarily established. The two extreme Δ m intervals are significantly different ( <0.01). Error bars, standard error of the Δ m mean obtained for each interval.

IMAGE

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error