sp. nov., an -serine-dehydratase-producing coccus isolated from the marine bryozoan Free

Abstract

A novel marine Gram-negative, non-motile, non-spore-forming, aerobic bacterium, associated with the bryozoan , was isolated in a screening programme for strains containing enzymes able to convert the amino acid -serine. Strain MBT-A4 produced -serine dehydratase and was able to grow on -serine as the sole carbon and nitrogen source. The nearest phylogenetic neighbour was , as determined by 16S rDNA sequence analysis (97·6 % similarity). The DNA–DNA reassociation value obtained for DSM11574 and MBT-A4 was 32·6 %. The major ubiquinone was Q-10. Based on genotypic, chemotaxonomic and physiological characteristics, a new species of the genus is proposed, sp. nov., the type strain being strain MBT-A4 (=DSM 14827 =CIP 107400).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02352-0
2003-03-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530443.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02352-0&mimeType=html&fmt=ahah

References

  1. Cashion P., Holder-Franklin M. A., McCully J., Franklin M. 1977; A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81:461–466 [CrossRef]
    [Google Scholar]
  2. Collins M. D. 1985; Isoprenoid quinone analyses in bacterial classification and identification. In Chemical Methods in Bacterial Systematics pp 267–287Edited by Goodfellow M., Minnikin D. E. London: Academic Press;
    [Google Scholar]
  3. Collins M. D. 1994; Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics pp 265–305Edited by Goodfellow M., O'Donnell A. G. Chichester: Wiley;
    [Google Scholar]
  4. Dagostino L., Goodmann A. E., Marshall K. C. 1991; Physiological responses induced in bacteria adhering to surfaces. Biofouling 4:113–119 [CrossRef]
    [Google Scholar]
  5. Davidson S. K., Allen S. W., Lim G. E., Anderson C. M., Haygood M. G. 2001; Evidence for the biosynthesis of bryostatins by the bacterial symbiont ‘ Candidatus Endobugula sertula’ of the bryozoan Bugula neritina . Appl Environ Microbiol 67:4531–4537 [CrossRef]
    [Google Scholar]
  6. DeSoete G. 1983; A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48:621–626 [CrossRef]
    [Google Scholar]
  7. Escara J. F., Hutton J. R. 1980; Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19:1315–1327 [CrossRef]
    [Google Scholar]
  8. Felsenstein J. 1993 phylip (phylogeny inference package) version 3.5.1 Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  9. Groth I., Schumann P., Weiss N., Martin K., Rainey F. A. 1996; Agrococcus jenensis gen. nov., sp. nov. a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46:234–239 [CrossRef]
    [Google Scholar]
  10. Harker M., Hirschberg J., Oren A. 1998; Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int J Syst Bacteriol 48:543–548 [CrossRef]
    [Google Scholar]
  11. Holmström C., Kjelleberg S. 1999; Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30:285–293 [CrossRef]
    [Google Scholar]
  12. Huß V. A. R., Festl H., Schleifer K.-H. 1983; Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4:184–192 [CrossRef]
    [Google Scholar]
  13. Jahnke K.-D. 1992; Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15:61–73 [CrossRef]
    [Google Scholar]
  14. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  15. Kelly D. P., Rainey F. A., Wood A. P. 2000; The genus Paracoccus . In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community , 3rd edn.Edited by Dworkin M., Falkow N., Rosenberg H., Schleifer K.-H., Stackebrandt E. http://link.springer.de
    [Google Scholar]
  16. Kuykendall L. D., Roy M. A., O'Neill J. J., Devine T. E. 1988; Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum . Int J Syst Bacteriol 38:358–361 [CrossRef]
    [Google Scholar]
  17. Lane D. J. 1991; 16S-23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics pp 125–175Edited by Stackebrandt E., Goodfellow M. Chichester: Wiley;
    [Google Scholar]
  18. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  19. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [CrossRef]
    [Google Scholar]
  20. Miller L. T. 1982; Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16:584–586
    [Google Scholar]
  21. Pukall R., Brambilla E., Stackebrandt E. 1998; Automated fragment length analysis of fluorescently-labeled 16S rDNA after digestion with 4-base cutting restriction enzymes. J Microbiol Methods 32:55–64 [CrossRef]
    [Google Scholar]
  22. Pukall R., Päuker O., Buntefuß D., Ulrichs G., Lebaron P., Bernard L., Guindulain T., Vives-Rego J., Stackebrandt E. 1999; High sequence diversity of Alteromonas macleodii -related cloned and cellular 16S rDNAs from a Mediterranean seawater mesocosm experiment. FEMS Microbiol Ecol 28:335–344 [CrossRef]
    [Google Scholar]
  23. Rainey F. A., Ward-Rainey N., Kroppenstedt R. M., Stackebrandt E. 1996; The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46:1088–1092 [CrossRef]
    [Google Scholar]
  24. Robinson R. W., Akin D. E., Nordstedt R. A., Thomas M. V., Aldrich H. C. 1984; Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors. Appl Environ Microbiol 48:127–136
    [Google Scholar]
  25. Sternberg C., Christensen B. B., Johansen T., Nielsen A. T., Andersen J. B., Givskov M., Molin S. 1999; Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65:4108–4117
    [Google Scholar]
  26. Tsubokura A., Yoneda H., Mizuta H. 1999; Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49:277–282 [CrossRef]
    [Google Scholar]
  27. Urakami T., Tamaoka J., Suzuki K., Komagata K. 1989; Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int J Syst Bacteriol 39:116–121 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02352-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02352-0
Loading

Data & Media loading...

Most cited Most Cited RSS feed