1887

Abstract

A novel marine Gram-negative, non-motile, non-spore-forming, aerobic bacterium, associated with the bryozoan , was isolated in a screening programme for strains containing enzymes able to convert the amino acid -serine. Strain MBT-A4 produced -serine dehydratase and was able to grow on -serine as the sole carbon and nitrogen source. The nearest phylogenetic neighbour was , as determined by 16S rDNA sequence analysis (97·6 % similarity). The DNA–DNA reassociation value obtained for DSM11574 and MBT-A4 was 32·6 %. The major ubiquinone was Q-10. Based on genotypic, chemotaxonomic and physiological characteristics, a new species of the genus is proposed, sp. nov., the type strain being strain MBT-A4 (=DSM 14827 =CIP 107400).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02352-0
2003-03-01
2019-10-17
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530443.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02352-0&mimeType=html&fmt=ahah

References

  1. Cashion, P., Holder-Franklin, M. A., McCully, J. & Franklin, M. ( 1977; ). A rapid method for the base ratio determination of bacterial DNA. Anal Biochem 81, 461–466.[CrossRef]
    [Google Scholar]
  2. Collins, M. D. ( 1985; ). Isoprenoid quinone analyses in bacterial classification and identification. In Chemical Methods in Bacterial Systematics, pp. 267–287. Edited by M. Goodfellow & D. E. Minnikin. London: Academic Press.
  3. Collins, M. D. ( 1994; ). Isoprenoid quinones. In Chemical Methods in Prokaryotic Systematics, pp. 265–305. Edited by M. Goodfellow & A. G. O'Donnell. Chichester: Wiley.
  4. Dagostino, L., Goodmann, A. E. & Marshall, K. C. ( 1991; ). Physiological responses induced in bacteria adhering to surfaces. Biofouling 4, 113–119.[CrossRef]
    [Google Scholar]
  5. Davidson, S. K., Allen, S. W., Lim, G. E., Anderson, C. M. & Haygood, M. G. ( 2001; ). Evidence for the biosynthesis of bryostatins by the bacterial symbiont ‘Candidatus Endobugula sertula’ of the bryozoan Bugula neritina. Appl Environ Microbiol 67, 4531–4537.[CrossRef]
    [Google Scholar]
  6. DeSoete, G. ( 1983; ). A least squares algorithm for fitting additive trees to proximity data. Psychometrika 48, 621–626.[CrossRef]
    [Google Scholar]
  7. Escara, J. F. & Hutton, J. R. ( 1980; ). Thermal stability and renaturation of DNA in dimethyl sulfoxide solutions: acceleration of the renaturation rate. Biopolymers 19, 1315–1327.[CrossRef]
    [Google Scholar]
  8. Felsenstein, J. ( 1993; ). phylip (phylogeny inference package) version 3.5.1. Department of Genetics, University of Washington, Seattle, USA.
  9. Groth, I., Schumann, P., Weiss, N., Martin, K. & Rainey, F. A. ( 1996; ). Agrococcus jenensis gen. nov., sp. nov., a new genus of actinomycetes with diaminobutyric acid in the cell wall. Int J Syst Bacteriol 46, 234–239.[CrossRef]
    [Google Scholar]
  10. Harker, M., Hirschberg, J. & Oren, A. ( 1998; ). Paracoccus marcusii sp. nov., an orange Gram-negative coccus. Int J Syst Bacteriol 48, 543–548.[CrossRef]
    [Google Scholar]
  11. Holmström, C. & Kjelleberg, S. ( 1999; ). Marine Pseudoalteromonas species are associated with higher organisms and produce biologically active extracellular agents. FEMS Microbiol Ecol 30, 285–293.[CrossRef]
    [Google Scholar]
  12. Huß, V. A. R., Festl, H. & Schleifer, K.-H. ( 1983; ). Studies on the spectrophotometric determination of DNA hybridization from renaturation rates. Syst Appl Microbiol 4, 184–192.[CrossRef]
    [Google Scholar]
  13. Jahnke, K.-D. ( 1992; ). Basic computer program for evaluation of spectroscopic DNA renaturation data from Gilford System 2600 spectrophotometer on a PC/XT/AT type personal computer. J Microbiol Methods 15, 61–73.[CrossRef]
    [Google Scholar]
  14. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  15. Kelly, D. P., Rainey, F. A. & Wood, A. P. ( 2000; ). The genus Paracoccus. In The Prokaryotes: an Evolving Electronic Resource for the Microbiological Community, 3rd edn (http://link.springer.de). Edited by M. Dworkin, N. Falkow, H. Rosenberg, K.-H. Schleifer & E. Stackebrandt.
  16. Kuykendall, L. D., Roy, M. A., O'Neill, J. J. & Devine, T. E. ( 1988; ). Fatty acids, antibiotic resistance, and deoxyribonucleic acid homology groups of Bradyrhizobium japonicum. Int J Syst Bacteriol 38, 358–361.[CrossRef]
    [Google Scholar]
  17. Lane, D. J. ( 1991; ). 16S-23S rRNA sequencing. In Nucleic Acid Techniques in Bacterial Systematics, pp. 125–175. Edited by E. Stackebrandt & M. Goodfellow. Chichester: Wiley.
  18. Maidak, B. L., Cole, J. R., Lilburn, T. G. & 7 other authors ( 2001; ). The RDP-II (Ribosomal Database Project). Nucleic Acids Res 29, 173–174.[CrossRef]
    [Google Scholar]
  19. Mesbah, M., Premachandran, U. & Whitman, W. B. ( 1989; ). Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39, 159–167.[CrossRef]
    [Google Scholar]
  20. Miller, L. T. ( 1982; ). Single derivatization method for routine analysis of bacterial whole-cell fatty acid methyl esters, including hydroxy acids. J Clin Microbiol 16, 584–586.
    [Google Scholar]
  21. Pukall, R., Brambilla, E. & Stackebrandt, E. ( 1998; ). Automated fragment length analysis of fluorescently-labeled 16S rDNA after digestion with 4-base cutting restriction enzymes. J Microbiol Methods 32, 55–64.[CrossRef]
    [Google Scholar]
  22. Pukall, R., Päuker, O., Buntefuß, D., Ulrichs, G., Lebaron, P., Bernard, L., Guindulain, T., Vives-Rego, J. & Stackebrandt, E. ( 1999; ). High sequence diversity of Alteromonas macleodii-related cloned and cellular 16S rDNAs from a Mediterranean seawater mesocosm experiment. FEMS Microbiol Ecol 28, 335–344.[CrossRef]
    [Google Scholar]
  23. Rainey, F. A., Ward-Rainey, N., Kroppenstedt, R. M. & Stackebrandt, E. ( 1996; ). The genus Nocardiopsis represents a phylogenetically coherent taxon and a distinct actinomycete lineage: proposal of Nocardiopsaceae fam. nov. Int J Syst Bacteriol 46, 1088–1092.[CrossRef]
    [Google Scholar]
  24. Robinson, R. W., Akin, D. E., Nordstedt, R. A., Thomas, M. V. & Aldrich, H. C. ( 1984; ). Light and electron microscopic examinations of methane-producing biofilms from anaerobic fixed-bed reactors. Appl Environ Microbiol 48, 127–136.
    [Google Scholar]
  25. Sternberg, C., Christensen, B. B., Johansen, T., Nielsen, A. T., Andersen, J. B., Givskov, M. & Molin, S. ( 1999; ). Distribution of bacterial growth activity in flow-chamber biofilms. Appl Environ Microbiol 65, 4108–4117.
    [Google Scholar]
  26. Tsubokura, A., Yoneda, H. & Mizuta, H. ( 1999; ). Paracoccus carotinifaciens sp. nov., a new aerobic Gram-negative astaxanthin-producing bacterium. Int J Syst Bacteriol 49, 277–282.[CrossRef]
    [Google Scholar]
  27. Urakami, T., Tamaoka, J., Suzuki, K. & Komagata, K. ( 1989; ). Paracoccus alcaliphilus sp. nov., an alkaliphilic and facultatively methylotrophic bacterium. Int J Syst Bacteriol 39, 116–121.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02352-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02352-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error