1887

Abstract

A strictly aerobic bacterium, strain FaiI4, was isolated from free-flowing geothermal waters of a bore (bore register no. 3768) tapping the Great Artesian Basin of Australia. The non-sporulating, Gram-negative cells of strain FaiI4 produced light-pink colonies, were rod-shaped (1×1·5–4 µm) and were motile by a single polar flagellum. Strain FaiI4 grew optimally at 41 °C at a pH of 7·0 and had an absolute requirement for yeast extract. The strain grew on casein hydrolysate, tryptone, gelatin, xylose and acetate in a medium supplemented with 0·06 or 0·006 % yeast extract. Weak acid production was detected from glucose and arabinose. Catalase was produced. Nitrite was produced from nitrate. Strain FaiI4 was sensitive to antibiotics that inhibit growth of bacteria. The G+C content was 63·5±0·5 mol%. Strain FaiI4 was a member of the class ‘’, phylum , placed almost equidistantly between species, and (similarity value of 93 %) as its nearest phylogenetic relatives. Phylogenetic and phenotypic evidence suggest that strain FaiI4 (=ATCC BAA-295 =DSM 14364) should be placed as the type strain of a species in a newly created genus, for which the name gen. nov., sp. nov. is proposed.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02348-0
2003-03-01
2024-12-01
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/2/ijs530401.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02348-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  2. Andrews K. T., Patel B. K. C. 1996; Fervidobacterium gondwanense sp. nov., a new thermophilic anaerobic bacterium isolated from nonvolcanically heated geothermal waters of the Great Artesian Basin of Australia. Int J Syst Bacteriol 46:265–269 [CrossRef]
    [Google Scholar]
  3. Auling G., Busse H. J., Egli T., El-Banna T., Stackebrandt E. 1993; Description of the gram-negative, obligately aerobic, nitrilotriacetate (NTA)-utilizing bacteria as Chelatobacter heintzii , gen. nov., sp. nov., and Chelatococcus asaccharovorans , gen. nov. sp. nov. Syst Appl Microbiol 16:104–112
    [Google Scholar]
  4. Das S. K., Mishra A. K., Tindall B. J., Rainey F. A., Stackebrandt E. 1996; Oxidation of thiosulfate by a new bacterium, Bosea thiooxidans (strain BI-42) gen. nov., sp. nov.: analysis of phylogeny based on chemotaxonomy and 16S ribosomal DNA sequencing. Int J Syst Bacteriol 46:981–987 [CrossRef]
    [Google Scholar]
  5. Dojka M. A., Hugenholtz P., Haack S. K., Pace N. R. 1998; Microbial diversity in a hydrocarbon- and chlorinated-solvent-contaminated aquifer undergoing intrinsic bioremediation. Appl Environ Microbiol 64:3869–3877
    [Google Scholar]
  6. Egli T., Weilenmann H., El-Banna T., Auling G. 1988; Gram-negative, aerobic, nitrilotriacetate-utilizing bacteria from wastewater and soil. Syst Appl Microbiol 10:297–305 [CrossRef]
    [Google Scholar]
  7. Garrity G. M., Holt J. G. 2001; The road map to the manual. In Bergey's Manual of Systematic Bacteriology , 2nd edn. vol  1 pp 119–166Edited by Boone D. R., Castenholz R. W., Garrity G. M. New York: Springer;
    [Google Scholar]
  8. Habermahl M. A. 1980; The Great Artesian Basin, Australia. BMR J Aust Geol Geophys 5:9–38
    [Google Scholar]
  9. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Window 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  10. Kanso S., Greene A. C., Patel B. K. C. 2002; Bacillus subterraneus sp. nov., an iron- and manganese-reducing bacterium from a deep subsurface Australian thermal aquifer. Int J Syst Evol Microbiol 52:869–874 [CrossRef]
    [Google Scholar]
  11. Love A. C., Patel B. K. C., Nichols P. D., Stackebrandt E. 1993; Desulfotomaculum australicum , sp. nov., a thermophilic sulfate-reducing bacterium isolated from the Great Artesian Basin in Australia. Syst Appl Microbiol 16:244–251 [CrossRef]
    [Google Scholar]
  12. Maidak B. L., Cole J. R., Lilburn T. G. 7 other authors 2001; The RDP-II (Ribosomal Database Project. Nucleic Acids Res 29:173–174 [CrossRef]
    [Google Scholar]
  13. Marmur J. 1961; A procedure for the isolation of deoxyribonucleic acids from microorganisms. J Mol Biol 3:208–218 [CrossRef]
    [Google Scholar]
  14. Mulder E. G., Deinema M. H. 1992; The sheathed bacteria. In The Prokaryotes , 2nd edn. vol 3 pp 2612–2624Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer;
    [Google Scholar]
  15. Patt T. E., Cole G. C., Hanson R. S. 1976; Methylobacterium , a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 26:226–229 [CrossRef]
    [Google Scholar]
  16. Pedersen K. 2000; Exploration of deep intraterrestrial microbial life: current perspectives. FEMS Microbiol Lett 185:9–16 [CrossRef]
    [Google Scholar]
  17. Phelps T. J., Fliermans C. B., Garland T. R., Pfiffner S. M., White D. C. 1989; Methods for recovery of deep terrestrial subsurface sediments for microbiological studies. J Microbiol Methods 9:267–279 [CrossRef]
    [Google Scholar]
  18. Redburn A. C., Patel B. K. 1994; Desulfovibrio longreachii sp. nov., a sulfate-reducing bacterium isolated from the Great Artesian Basin of Australia. FEMS Microbiol Lett 115:33–38 [CrossRef]
    [Google Scholar]
  19. Smibert R. M., Krieg N. R. 1994; Phenotypic characterization. In Methods for General and Molecular Bacteriology pp 607–654Edited by Gerhardt P., Murray R. G. E., Wood W. A., Krieg N. R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Spanevello M. D. 2001 The phylogeny of prokaryotes associated with Australia's Great Artesian Basin PhD thesis Griffith University; Brisbane, Australia:
    [Google Scholar]
  21. Spanevello M. D., Yamamoto H., Patel B. K. C. 2002; Thermaerobacter subterraneus sp. nov., a novel aerobic bacterium from the Great Artesian Basin of Australia, and emendation of the genus Thermaerobacter . Int J Syst Evol Microbiol 52:795–800 [CrossRef]
    [Google Scholar]
  22. Stevens T. O., McKinley J. P. 1995; Lithoautotrophic microbial ecosystems in deep basalt aquifers. Science 270:450–454 [CrossRef]
    [Google Scholar]
  23. Urakami T., Komagata K. 1984; Protomonas , a new genus of facultatively methylotrophic bacteria. Int J Syst Bacteriol 34:188–201 [CrossRef]
    [Google Scholar]
  24. Urakami T., Araki H., Suzuki K., Komagata K. 1993; Further studies of the genus Methylobacterium and description of Methylobacterium aminovorans sp. nov. Int J Syst Bacteriol 43:504–513 [CrossRef]
    [Google Scholar]
  25. Von Wintzingerode F., Selent B., Hegemann W., Gobel U. B. 1999; Phylogenetic analysis of an anaerobic, trichlorobenzene-transforming microbial consortium. Appl Environ Microbiol 65:283–286
    [Google Scholar]
  26. Wolin E. A., Wolin M. J., Wolfe R. S. 1963; Formation of methane by bacterial extracts. J Biol Chem 238:2882–2886
    [Google Scholar]
  27. Wynter C., Patel B. K., Bain P., de Jersey J., Hamilton S., Inkerman P. A. 1996; A novel thermostable dextranase from a Thermoanaerobacter species cultured from the geothermal waters of the Great Artesian Basin of Australia. FEMS Microbiol Lett 140:271–276 [CrossRef]
    [Google Scholar]
  28. Zeikus J. G., Hegge P. W., Anderson M. A. 1979; Thermoanaerobium brockii gen. nov. and sp. nov., a new chemoorganotrophic, caldoactive, anaerobic bacterium. Arch Microbiol 122:41–48 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02348-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02348-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error