1887

Abstract

The nucleotide sequences of the 3′ end of the 16S rDNA and the 16S–23S internal transcribed spacer (ITS) of 40 species were determined. These included 21 , 9 , 6 , 2 , 1 and 1 species. Comparative sequence analysis of a 220 bp region covering a highly conserved 150 bp sequence located at the 3′ end of the 16S rRNA coding region and a conserved 70 bp sequence located at the 5′ end of the 16S–23S ITS of the 40 species and six sequences available in GenBank were used to infer the phylogenetic relationships between all 46 taxa. When a maximal distance ( , where refers to the number of nucleotide substitutions per site) of 0·31 was introduced as a threshold to determine groupings, 10 phylogenetically distinct clusters were revealed. Twenty-six species were separated in seven groups (I, II, III, IV, V, VI and X), but remained ungrouped. All six species under study were in Group VII. The nine species fell into two distinct groups (VIII and IX). Species with values within 0·05 were considered to be very closely related. These were and in Group II; ‘’ and in Group II; , , and in Group VI; and in Group VI; and in Group VII; and in Group VIII; and , , and in Group X. The phylogenetic classification presented here is, in general, in agreement with current classifications based on phenotypic and molecular data. Our findings suggest, however, that in some cases, further divisions or, conversely, further groupings might be warranted. Should current classifications be re-examined in the light of our results, values of 0·31 and 0·05, as exemplified here, may prove useful threshold values for the grouping of into taxa akin to genera and species, respectively. These thresholds may also reveal, in a different way, bacterial species for which further characterization might be warranted for proper classification and/or reassignment.

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02346-0
2003-05-01
2020-01-22
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/3/ijs530695.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02346-0&mimeType=html&fmt=ahah

References

  1. Abd El-Rahman, H. A., Fritze, D., Spröer, C. & Clauss, D. ( 2002; ). Two novel psychrotolerans species: Bacillus psychrotolerans sp. nov. and Bacillus psychrodurans sp. nov. which contain ornithine in their cell walls. Int J Syst Evol Microbiol 52, 2127–2133.[CrossRef]
    [Google Scholar]
  2. Apirion, D. & Miczak, A. ( 1993; ). RNA processing in prokaryotic cells. Bioessays 15, 113–120.[CrossRef]
    [Google Scholar]
  3. Ash, C., Farrow, A. E., Wallbanks, S. & Collins, M. D. ( 1991; ). Phylogenetic heterogeneity of the genus Bacillus revealed by comparative analysis of small-subunit-ribosomal RNA sequences. Lett Appl Microbiol 13, 202–206.
    [Google Scholar]
  4. Ash, C., Priest, F. G. & Collins, D. ( 1993; ). Molecular identification of rRNA group 3 bacilli (Ash, Farrow, Wallbanks and Collins) using a PCR probe test. Proposal for the creation of a new genus Paenibacillus. Antonie van Leeuwenhoek 64, 253–260.
    [Google Scholar]
  5. Berg, K. L., Squires, C. & Squires, C. L. ( 1989; ). Ribosomal RNA operon anti-termination. Function of leader and spacer region box B-box A sequences and their conservation in diverse micro-organisms. J Mol Biol 209, 345–358.[CrossRef]
    [Google Scholar]
  6. Bourque, S. N., Valero, J. R., Lavoie, M. C. & Levesque, R. C. ( 1995; ). Comparative analysis of the 16S to 23S ribosomal intergenic spacer sequences of Bacillus thuringiensis strains and subspecies and of closely related species. Appl Environ Microbiol 61, 1623–1626.
    [Google Scholar]
  7. Chun, J. & Bae, K. S. ( 2000; ). Phylogenetic analysis of Bacillus subtilis and related taxa based on partial gyrA gene sequences. Antonie van Leeuwenhoek 78, 123–127.[CrossRef]
    [Google Scholar]
  8. Claus, D. & Berkeley, R. C. W. ( 1986; ). Genus Bacillus Cohn 1872, 174AL. In Bergey's Manual of Systematic Bacteriology, vol. 2, pp. 1105–1139. Edited by P. H. A. Sneath, N. S. Mair, M. E. Sharpe & J. G. Holt. Baltimore: Williams & Wilkins.
  9. Daffonchio, D., Borin, S., Consolandi, A., Mora, D., Manachini, P. L. & Sorlini, C. ( 1998a; ). 16S–23S rRNA internal transcribed spacers as molecular markers for the species of the 16S rRNA group I of the genus Bacillus. FEMS Microbiol Lett 163, 229–236.
    [Google Scholar]
  10. Daffonchio, D., Borin, S., Frova, G., Manachini, P. L. & Sorlini, C. ( 1998b; ). PCR fingerprinting of whole genomes: the spacers between the 16S and 23S rRNA genes and of intergenic tRNA gene regions reveal a different intraspecific genomic variability of Bacillus cereus and Bacillus licheniformis. Int J Syst Bacteriol 48, 107–116.[CrossRef]
    [Google Scholar]
  11. de Silva, S., Petterson, B., de Muro, M. A. & Priest, F. G. ( 1998; ). A DNA probe for the detection and identification of Bacillus sporothermodurans using the 16S–23S rDNA spacer region and phylogenetic analysis of some field isolates of Bacillus which form highly heat resistant spores. Syst Appl Microbiol 21, 398–407.[CrossRef]
    [Google Scholar]
  12. Felsenstein, J. ( 1989; ). phylip-phylogeny inference package (version 2). Cladistics 5, 164–166.
    [Google Scholar]
  13. Felsenstein, J. ( 2001; ). phylip version 3.6a2. Distributed by the author. Department of Genetics, University of Washington, Seattle, WA, USA.
  14. Fortina, M. G., Pukall, R., Schumann, P., Mora, D., Parini, C., Manachini, P. L. & Stackebrandt, E. ( 2001; ). Ureibacillus gen. nov., a new genus to accommodate Bacillus thermosphaericus (Andersson et al. 1995), emendation of Ureibacillus thermosphaericus and description of Ureibacillus terrenus sp. nov. Int J Syst Evol Microbiol 51, 447–455.
    [Google Scholar]
  15. Fox, G. E., Wisotzkey, J. D. & Jurtshuk, P., Jr ( 1992; ). How close is close: 16S rRNA sequence identity may not be sufficient to guarantee species identity. Int J Syst Bacteriol 42, 166–170.[CrossRef]
    [Google Scholar]
  16. García-Martínez, J., Acinas, S. G., Antón, A. I. & Rodríguez-Valera, F. ( 1999; ). Use of the 16S–23S ribosomal genes spacer region in studies of prokaryotic diversity. J Microbiol Methods 36, 55–64.[CrossRef]
    [Google Scholar]
  17. Goto, K., Omura, T., Hara, Y. & Sadaie, Y. ( 2000; ). Application of the partial 16S rDNA sequence as an index for rapid identification of species in the genus Bacillus. J Gen Appl Microbiol 46, 1–8.[CrossRef]
    [Google Scholar]
  18. Gürtler, V. & Stanisich, V. A. ( 1996; ). New approaches to typing and identification of bacteria using the 16S–23S rDNA spacer region. Microbiology 142, 3–16.[CrossRef]
    [Google Scholar]
  19. Helgason, E., Okstad, O. A., Caugant, D. A., Johansen, H. A., Fouet, A., Mock, M., Hegna, I. & Kolsto, A.-B. ( 2000; ). Bacillus anthracis, Bacillus cereus, and Bacillus thuringiensis – one species on the basis of genetic evidence. Appl Environ Microbiol 66, 2627–2630.[CrossRef]
    [Google Scholar]
  20. Heyndrickx, M., Vandemeulebroecke, K., Scheldeman, P. & 7 others authors ( 1995; ). Paenibacillus (formerly Bacillus) gordonae (Pichinoty et al. 1986) Ash et al. 1994 is a later subjective synonym of Paenibacillus (formerly Bacillus) validus ( Nakamura 1984 ) Ash et al. 1994: emended description of P. validus. Int J Syst Bacteriol 45, 661–669.[CrossRef]
    [Google Scholar]
  21. Heyndrickx, M., Lebbe, L., Kersters, K., De Vos, P., Forsyth, G. & Logan, N. A. ( 1998; ). Virgibacillus: a new genus to accommodate Bacillus pantothenticus (Proom and Knight 1950). Emended description of Virgibacillus pantothenticus. Int J Syst Bacteriol 48, 99–106.[CrossRef]
    [Google Scholar]
  22. Joung, K.-B. & Côté, J.-C. ( 2002; ). Evaluation of ribosomal RNA gene restriction patterns for the classification of Bacillus species and related genera. J Appl Microbiol 92, 97–108.[CrossRef]
    [Google Scholar]
  23. Lane, D. J., Pace, B., Olsen, G. J., Stahl, D. A., Sogin, M. J. & Pace, N. R. ( 1985; ). Rapid determination of 16S ribosomal RNA sequences for phylogenetic analyses. Proc Natl Acad Sci U S A 82, 6955–6959.[CrossRef]
    [Google Scholar]
  24. Larkin, J. M. & Stokes, J. L. ( 1967; ). Taxonomy of psychrophylic strains of Bacillus. J Bacteriol 94, 889–895.
    [Google Scholar]
  25. Liiv, A., Tenson, T., Margus, T. & Remme, J. ( 1998; ). Multiple functions of the transcribed spacers in ribosomal RNA operons. Biol Chem 379, 783–793.
    [Google Scholar]
  26. Logan, N. A. & Berkeley, R. C. W. ( 1984; ). Identification of Bacillus strains using the API system. J Gen Microbiol 130, 1871–1882.
    [Google Scholar]
  27. Nakamura, L. K. ( 1984; ). Bacillus psychrophilus sp. nov., nom. rev. Int J Syst Bacteriol 34, 121–123.[CrossRef]
    [Google Scholar]
  28. Nazina, T. N., Tourova, T. P., Poltaraus, A. B. & 8 other authors. ( 2001; ). Taxonomic study of aerobic thermophilic bacilli: descriptions of Geobacillus subterraneus gen. nov., sp. nov. and Geobacillus uzenensis sp. nov. from petroleum reservoirs and transfer of Bacillus stearothermophilus, Bacillus thermocatenulatus, Bacillus thermoleovorans, Bacillus kaustophilus, Bacillus thermoglucosidasius and Bacillus thermodenitrificans to Geobacillus as the new combinations G. stearothermophilus, G. thermocatenulatus, G. thermoleovorans, G. kaustophilus, G. thermoglucosidasius and G. thermodenitrificans. Int J Syst Evol Microbiol 51, 433–446.
    [Google Scholar]
  29. Niimura, Y., Koh, E., Yanagida, F., Suzuki, K.-I., Komagata, K. & Kozaki, M. ( 1990; ). Amphibacillus xylanus gen. nov., sp. nov., a facultatively anaerobic sporeforming xylan-digesting bacterium which lacks cytochrome, quinone, and catalase. Int J Syst Bacteriol 40, 297–301.[CrossRef]
    [Google Scholar]
  30. Nodwell, J. R. & Greenblatt, J. ( 1993; ). Recognition of boxA antiterminator RNA by the E. coli antitermination factors NusB and ribosomal protein S10. Cell 72, 261–268.[CrossRef]
    [Google Scholar]
  31. Nour, M. ( 1998; ). 16S–23S and 23S–5S intergenic spacer regions of lactobacilli: nucleotide sequence, secondary structure and comparative analysis. Res Microbiol 149, 433–448.[CrossRef]
    [Google Scholar]
  32. Page, R. D. M. ( 1996; ). treeview: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12, 357–358.
    [Google Scholar]
  33. Pfeiffer, T. & Hartmann, R. K. ( 1997; ). Role of the spacer boxA of Escherichia coli ribosomal RNA operons in efficient 23S rRNA synthesis in vivo. J Mol Biol 265, 385–393.[CrossRef]
    [Google Scholar]
  34. Pienta, P., Tang, J. & Cote, R. ( 1996; ). ATCC Bacteria and Bacteriophages, 19th edn. Rockville, MD, USA: American Type Culture Collection.
  35. Priest, F. G., Goodfellow, M. & Todd, C. ( 1988; ). A numerical classification of the genus Bacillus. J Gen Microbiol 134, 1847–1882.
    [Google Scholar]
  36. Rössler, D., Ludwig, W., Schleifer, K. H., Lin, C., McGill, T. J., Wisotzkey, J. D., Jurtshuk, P., Jr & Fox, G. E. ( 1991; ). Phylogenetic diversity in the genus Bacillus as seen by 16S rRNA sequencing studies. Syst Appl Microbiol 14, 266–269.[CrossRef]
    [Google Scholar]
  37. Sambrook, J., Fritsch, E. F. & Maniatis, T. ( 1989; ). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory.
  38. Sanger, F., Nicklen, S. & Coulson, A. R. ( 1977; ). DNA sequencing with chain-terminating inhibitors. Proc Natl Acad Sci U S A 74, 5463–5467.[CrossRef]
    [Google Scholar]
  39. Schlesner, H., Lawson, P. A., Collins, M. D., Weiss, N., Wehmeyer, U., Völker, H. & Thomm, M. ( 2001; ). Filobacillus milensis gen. nov., sp. nov., a new halophilic spore-forming bacterium with Orn-d-Glu-type peptidoglycan. Int J Syst Evol Microbiol 51, 425–431.
    [Google Scholar]
  40. Shida, O., Takagi, H., Kadowaki, K., Udaka, S., Nakamura, L. K. & Komagata, K. ( 1995; ). Proposal of Bacillus reuszeri sp. nov., Bacillus formosus sp. nov., nom. rev., and Bacillus borstelensis sp. nov., nom. rev. Int J Syst Bacteriol 45, 93–100.[CrossRef]
    [Google Scholar]
  41. Shida, O., Takagi, H., Kadowaki, K. & Komagata, K. ( 1996a; ). Proposal for two new genera, Brevibacillus gen. nov. and Aneurinibacillus gen. nov. Int J Syst Bacteriol 46, 939–946.[CrossRef]
    [Google Scholar]
  42. Shida, O., Takagi, H., Kadowaki, K., Yano, H. & Komagata, K. ( 1996b; ). Differentiation of species in the Bacillus brevis group and the Bacillus aneurolyticus group based on the electrophoretic whole-cell protein pattern. Antonie van Leeuwenhoek 70, 31–39.[CrossRef]
    [Google Scholar]
  43. Stephen, D., Jones, C. & Schofield, J. P. ( 1990; ). A rapid method for isolating high quality plasmid DNA suitable for DNA sequencing. Nucleic Acids Res 18, 7463–7464.[CrossRef]
    [Google Scholar]
  44. Takagi, H., Shida, O., Kadowaki, K., Komagata, K. & Udaka, S. ( 1993; ). Characterization of Bacillus brevis with descriptions of Bacillus migulanus sp. nov., Bacillus choshinensis sp. nov., Bacillus parabrevis sp. nov., and Bacillus galactophilus sp. nov. Int J Syst Bacteriol 43, 221–231.[CrossRef]
    [Google Scholar]
  45. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  46. Wainø, M., Tindall, B. J., Schumann, P. & Ingvorsen, K. ( 1999; ). Gracilibacillus gen. nov., with description of Gracilibacillus halotolerans gen. nov., sp. nov.; transfer of Bacillus dipsosauri to Gracilibacillus dipsosauri comb. nov., and Bacillus salexigens to the genus Salibacillus gen. nov., as Salibacillus salexigens comb. nov. Int J Syst Bacteriol 49, 821–831.[CrossRef]
    [Google Scholar]
  47. Weisburg, W. G., Barns, S. M., Pelletier, D. A. & Lane, D. J. ( 1991; ). 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173, 697–703.
    [Google Scholar]
  48. Wisotzkey, J. D., Jurtshuk, P., Jr, Fox, G. E., Deinhard, G. & Poralla, K. ( 1992; ). Comparative sequence analyses on the 16S rRNA (rDNA) of Bacillus acidocaldarius, Bacillus acidoterrestris, and Bacillus cycloheptanicus and proposal for creation of a new genus, Alicyclobacillus gen. nov. Int J Syst Bacteriol 42, 263–269.[CrossRef]
    [Google Scholar]
  49. Woese, C. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  50. Yoon, J.-H., Weiss, N., Lee, K.-C., Lee, I.-S., Kang, K. H. & Park, Y.-H. ( 2001; ). Jeotgalibacillus alimentarius gen. nov., sp. nov., a novel bacterium isolated from jeotgal with l-lysine in the cell wall, and reclassification of Bacillus marinus Rüger 1983 as Marinibacillus marinus gen. nov., comb. nov. Int J Syst Evol Microbiol 51, 2087–2093.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02346-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02346-0
Loading

Data & Media loading...

Supplements

vol. 53, part 3, pp. 695-704

A comparative analysis of the 3' end of the 16S rRNA coding region of 46 species is available as an Acrobat PDF file.



PDF

Most cited articles

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error