1887

Abstract

A Gram-negative, non-motile, non-spore-forming, moderately halophilic rod (strain SM-1) was isolated from salt marsh around the junction of the Youngsan River and the Yellow Sea in Korea and subjected to a polyphasic taxonomic study. This organism grew optimally at 37 °C and was able to grow at 10 and 45 °C. It grew optimally in the presence of 2–3 % (w/v) NaCl. The major fatty acids in strain SM-1 were iso-C and C. Strain SM-1 and DSM 11525 were characterized by having ubiquinone-8 as the predominant respiratory lipoquinone. The DNA G+C content of strain SM-1 was 59 mol%. Phylogenetic analysis based on 16S rDNA sequences showed that strain SM-1 formed a coherent cluster with ; this relationship was supported by a bootstrap resampling value of 100 %. The level of 16S rDNA identity between strain SM-1 and the type strain of was 98·6 %. The mean level of DNA–DNA relatedness between strain SM-1 and the type strain of was 20·6 %. Therefore, on the basis of phenotypic properties, phylogeny and genomic data, strain SM-1 should be placed in the genus as a member of a novel species, for which the name sp. nov. is proposed. The type strain of the novel species is strain SM-1 (=KCCM 41586 =JCM 11542).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02342-0
2003-01-01
2024-10-04
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530053.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02342-0&mimeType=html&fmt=ahah

References

  1. Anzai Y., Kim H., Park J.-Y., Wakabayashi H., Oyaizu H. 2000; Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50:1563–1589 [CrossRef]
    [Google Scholar]
  2. Baumann P., Baumann L. 1981; The marine Gram-negative eubacteria: genera Photobacterium Beneckea , Alteromonas , Pseudomonas , and Alcaligenes . In The Prokaryotes pp 1302–1331Edited by Starr M. P., Stolp H., Trüper H. G., Balows A., Schlegel H. G. Berlin: Springer-Verlag;
    [Google Scholar]
  3. Cowan S. T., Steel K. J. 1965 Manual for the Identification of Medical Bacteria London: Cambridge University Press;
    [Google Scholar]
  4. Ezaki T., Hashimoto Y., Yabuuchi E. 1989; Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39:224–229 [CrossRef]
    [Google Scholar]
  5. Felsenstein J. 1981; Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17:368–376 [CrossRef]
    [Google Scholar]
  6. Felsenstein J. 1993 phylip (phylogenetic inference package) version 3.5 Department of Genetics, University of Washington; Seattle, USA:
    [Google Scholar]
  7. Franzmann P. D., Tindall B. J. 1990; A chemotaxonomic study of members of the family Halomonadaceae . Syst Appl Microbiol 13:142–147 [CrossRef]
    [Google Scholar]
  8. González J. M., Mayer F., Moran M. A., Hodson R. E., Whitman W. B. 1997; Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov. sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47:369–376 [CrossRef]
    [Google Scholar]
  9. Huu N. B., Denner E. B. M., Ha D. T. C., Wanner G., Stan-Lotter H. 1999; Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49:367–375 [CrossRef]
    [Google Scholar]
  10. Jukes T. H., Cantor C. R. 1969; Evolution of protein molecules. In Mammalian Protein Metabolism vol 3 pp 21–132Edited by Munro H. N. New York: Academic Press;
    [Google Scholar]
  11. Kluge A. G., Farris F. S. 1969; Quantitative phyletics and the evolution of anurans. Syst Zool 18:1–32 [CrossRef]
    [Google Scholar]
  12. Komagata K., Suzuki K. 1987; Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19:161–203
    [Google Scholar]
  13. Lanyi B. 1987; Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19:1–67
    [Google Scholar]
  14. Leifson E. 1963; Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85:1183–1184
    [Google Scholar]
  15. Oyaizu H., Komagata K. 1983; Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29:17–40 [CrossRef]
    [Google Scholar]
  16. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  17. Sakane T., Yokota A. 1994; Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum , Magnetospirillum and Oceanospirillum . Syst Appl Microbiol 17:128–134 [CrossRef]
    [Google Scholar]
  18. Solano F., Sanchez-Amat A. 1999; Studies on the phylogenetic relationships of melanogenic marine bacteria: proposal of Marinomonas mediterranea sp. nov. Int J Syst Bacteriol 49:1241–1246 [CrossRef]
    [Google Scholar]
  19. Stackebrandt E., Rainey F. A., Ward-Rainey N. L. 1997; Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47:479–491 [CrossRef]
    [Google Scholar]
  20. Tamaoka J., Komagata K. 1984; Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25:125–128 [CrossRef]
    [Google Scholar]
  21. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680 [CrossRef]
    [Google Scholar]
  22. Wayne L. G., Brenner D. J., Colwell R. R.9 other authors 1987; International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37:463–464 [CrossRef]
    [Google Scholar]
  23. Woese C. R. 1987; Bacterial evolution. Microbiol Rev 51:221–271
    [Google Scholar]
  24. Yakimov M. M., Golyshin P. N., Lang S., Moore E. R. B., Abraham W.-R., Lünsdorf H., Timmis K. N. 1998; Alcanivorax borkumensis gen. nov., sp. nov., a new hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48:339–348 [CrossRef]
    [Google Scholar]
  25. Yoon J.-H., Kim H., Kim S.-B., Kim H.-J., Kim W. Y., Lee S. T., Goodfellow M., Park Y.-H. 1996; Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46:502–505 [CrossRef]
    [Google Scholar]
  26. Yoon J.-H., Lee S. T., Park Y.-H. 1998; Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48:187–194 [CrossRef]
    [Google Scholar]
/content/journal/ijsem/10.1099/ijs.0.02342-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02342-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error