1887

Abstract

A Gram-negative, non-motile, non-spore-forming, moderately halophilic rod (strain SM-1) was isolated from salt marsh around the junction of the Youngsan River and the Yellow Sea in Korea and subjected to a polyphasic taxonomic study. This organism grew optimally at 37 °C and was able to grow at 10 and 45 °C. It grew optimally in the presence of 2–3 % (w/v) NaCl. The major fatty acids in strain SM-1 were iso-C and C. Strain SM-1 and DSM 11525 were characterized by having ubiquinone-8 as the predominant respiratory lipoquinone. The DNA G+C content of strain SM-1 was 59 mol%. Phylogenetic analysis based on 16S rDNA sequences showed that strain SM-1 formed a coherent cluster with ; this relationship was supported by a bootstrap resampling value of 100 %. The level of 16S rDNA identity between strain SM-1 and the type strain of was 98·6 %. The mean level of DNA–DNA relatedness between strain SM-1 and the type strain of was 20·6 %. Therefore, on the basis of phenotypic properties, phylogeny and genomic data, strain SM-1 should be placed in the genus as a member of a novel species, for which the name sp. nov. is proposed. The type strain of the novel species is strain SM-1 (=KCCM 41586 =JCM 11542).

Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.02342-0
2003-01-01
2019-10-14
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/53/1/ijs530053.html?itemId=/content/journal/ijsem/10.1099/ijs.0.02342-0&mimeType=html&fmt=ahah

References

  1. Anzai, Y., Kim, H., Park, J.-Y., Wakabayashi, H. & Oyaizu, H. ( 2000; ). Phylogenetic affiliation of the pseudomonads based on 16S rRNA sequence. Int J Syst Evol Microbiol 50, 1563–1589.[CrossRef]
    [Google Scholar]
  2. Baumann, P. & Baumann, L. ( 1981; ). The marine Gram-negative eubacteria: genera Photobacterium, Beneckea, Alteromonas, Pseudomonas, and Alcaligenes. In The Prokaryotes, pp. 1302–1331. Edited by M. P. Starr, H. Stolp, H. G. Trüper, A. Balows & H. G. Schlegel. Berlin: Springer-Verlag.
  3. Cowan, S. T. & Steel, K. J. ( 1965; ). Manual for the Identification of Medical Bacteria. London: Cambridge University Press.
  4. Ezaki, T., Hashimoto, Y. & Yabuuchi, E. ( 1989; ). Fluorometric deoxyribonucleic acid-deoxyribonucleic acid hybridization in microdilution wells as an alternative to membrane filter hybridization in which radioisotopes are used to determine genetic relatedness among bacterial strains. Int J Syst Bacteriol 39, 224–229.[CrossRef]
    [Google Scholar]
  5. Felsenstein, J. ( 1981; ). Evolutionary trees from DNA sequences: a maximum likelihood approach. J Mol Evol 17, 368–376.[CrossRef]
    [Google Scholar]
  6. Felsenstein, J. ( 1993; ). phylip (phylogenetic inference package) version 3.5. Department of Genetics, University of Washington, Seattle, USA.
  7. Franzmann, P. D. & Tindall, B. J. ( 1990; ). A chemotaxonomic study of members of the family Halomonadaceae. Syst Appl Microbiol 13, 142–147.[CrossRef]
    [Google Scholar]
  8. González, J. M., Mayer, F., Moran, M. A., Hodson, R. E. & Whitman, W. B. ( 1997; ). Microbulbifer hydrolyticus gen. nov., sp. nov., and Marinobacterium georgiense gen. nov., sp. nov., two marine bacteria from a lignin-rich pulp mill waste enrichment community. Int J Syst Bacteriol 47, 369–376.[CrossRef]
    [Google Scholar]
  9. Huu, N. B., Denner, E. B. M., Ha, D. T. C., Wanner, G. & Stan-Lotter, H. ( 1999; ). Marinobacter aquaeolei sp. nov., a halophilic bacterium isolated from a Vietnamese oil-producing well. Int J Syst Bacteriol 49, 367–375.[CrossRef]
    [Google Scholar]
  10. Jukes, T. H. & Cantor, C. R. ( 1969; ). Evolution of protein molecules. In Mammalian Protein Metabolism, vol. 3, pp. 21–132. Edited by H. N. Munro. New York: Academic Press.
  11. Kluge, A. G. & Farris, F. S. ( 1969; ). Quantitative phyletics and the evolution of anurans. Syst Zool 18, 1–32.[CrossRef]
    [Google Scholar]
  12. Komagata, K. & Suzuki, K. ( 1987; ). Lipids and cell-wall analysis in bacterial systematics. Methods Microbiol 19, 161–203.
    [Google Scholar]
  13. Lanyi, B. ( 1987; ). Classical and rapid identification methods for medically important bacteria. Methods Microbiol 19, 1–67.
    [Google Scholar]
  14. Leifson, E. ( 1963; ). Determination of carbohydrate metabolism of marine bacteria. J Bacteriol 85, 1183–1184.
    [Google Scholar]
  15. Oyaizu, H. & Komagata, K. ( 1983; ). Grouping of Pseudomonas species on the basis of cellular fatty acid composition and the quinone system with special reference to the existence of 3-hydroxy fatty acids. J Gen Appl Microbiol 29, 17–40.[CrossRef]
    [Google Scholar]
  16. Saitou, N. & Nei, M. ( 1987; ). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4, 406–425.
    [Google Scholar]
  17. Sakane, T. & Yokota, A. ( 1994; ). Chemotaxonomic investigation of heterotrophic, aerobic and microaerophilic spirilla, the genera Aquaspirillum, Magnetospirillum and Oceanospirillum. Syst Appl Microbiol 17, 128–134.[CrossRef]
    [Google Scholar]
  18. Solano, F. & Sanchez-Amat, A. ( 1999; ). Studies on the phylogenetic relationships of melanogenic marine bacteria: proposal of Marinomonas mediterranea sp. nov. Int J Syst Bacteriol 49, 1241–1246.[CrossRef]
    [Google Scholar]
  19. Stackebrandt, E., Rainey, F. A. & Ward-Rainey, N. L. ( 1997; ). Proposal for a new hierarchic classification system, Actinobacteria classis nov. Int J Syst Bacteriol 47, 479–491.[CrossRef]
    [Google Scholar]
  20. Tamaoka, J. & Komagata, K. ( 1984; ). Determination of DNA base composition by reversed-phase high-performance liquid chromatography. FEMS Microbiol Lett 25, 125–128.[CrossRef]
    [Google Scholar]
  21. Thompson, J. D., Higgins, D. G. & Gibson, T. J. ( 1994; ). clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22, 4673–4680.[CrossRef]
    [Google Scholar]
  22. Wayne, L. G., Brenner, D. J., Colwell, R. R. & 9 other authors ( 1987; ). International Committee on Systematic Bacteriology. Report of the ad hoc committee on reconciliation of approaches to bacterial systematics. Int J Syst Bacteriol 37, 463–464.[CrossRef]
    [Google Scholar]
  23. Woese, C. R. ( 1987; ). Bacterial evolution. Microbiol Rev 51, 221–271.
    [Google Scholar]
  24. Yakimov, M. M., Golyshin, P. N., Lang, S., Moore, E. R. B., Abraham, W.-R., Lünsdorf, H. & Timmis, K. N. ( 1998; ). Alcanivorax borkumensis gen. nov., sp. nov., a new, hydrocarbon-degrading and surfactant-producing marine bacterium. Int J Syst Bacteriol 48, 339–348.[CrossRef]
    [Google Scholar]
  25. Yoon, J.-H., Kim, H., Kim, S.-B., Kim, H.-J., Kim, W. Y., Lee, S. T., Goodfellow, M. & Park, Y.-H. ( 1996; ). Identification of Saccharomonospora strains by the use of genomic DNA fragments and rRNA gene probes. Int J Syst Bacteriol 46, 502–505.[CrossRef]
    [Google Scholar]
  26. Yoon, J.-H., Lee, S. T. & Park, Y.-H. ( 1998; ). Inter- and intraspecific phylogenetic analysis of the genus Nocardioides and related taxa based on 16S rDNA sequences. Int J Syst Bacteriol 48, 187–194.[CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.02342-0
Loading
/content/journal/ijsem/10.1099/ijs.0.02342-0
Loading

Data & Media loading...

Most Cited This Month

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error