1887

Abstract

A Gram-reaction-positive, rod-shaped, spore-forming bacterium, designated Gsoil 1105, was isolated from soil of a ginseng field in Pocheon Province in South Korea and characterized in order to determine its taxonomic position. Comparative analysis of the 16S rRNA gene sequence showed that the isolate belongs to the order , showing the highest level of sequence similarity with respect to Eur1 9.5 (94.6 %). The phylogenetic distances from other described species with validly published names within the order were greater than 9.0 %. Strain Gsoil 1105 had a genomic DNA G+C content of 55.6 mol% and menaquinone 7 (MK-7) as the major respiratory quinone. The major fatty acids were iso-C and anteiso-C. On the basis of its phenotypic properties and phylogenetic distinctiveness, strain Gsoil 1105 represents a novel species of the genus , for which the name sp. nov. is proposed. The type strain is Gsoil 1105 ( = KCTC 13942  = DSM 18389).

Funding
This study was supported by the:
  • 21C Frontier Microbial Genomics and Application Center Program, Ministry of Science and Technology, Republic of Korea (Award MG08-0101-2-0)
Loading

Article metrics loading...

/content/journal/ijsem/10.1099/ijs.0.023358-0
2011-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/ijsem/61/7/1715.html?itemId=/content/journal/ijsem/10.1099/ijs.0.023358-0&mimeType=html&fmt=ahah

References

  1. Atlas R. M. 1993 Handbook of Microbiological Media Edited by Parks L. C. Boca Raton, FL: CRC Press;
    [Google Scholar]
  2. Buck J. D. 1982; Nonstaining (KOH) method for determination of gram reactions of marine bacteria. Appl Environ Microbiol 44:992–993[PubMed]
    [Google Scholar]
  3. Felsenstein J. 1985; Confidence limit on phylogenies: an approach using the bootstrap. Evolution 39:783–791 [View Article]
    [Google Scholar]
  4. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2). Cladistics 5:164–166
    [Google Scholar]
  5. Fitch W. M. 1971; Toward defining the course of evolution: minimum change for a specific tree topology. Syst Zool 20:406–416 [View Article]
    [Google Scholar]
  6. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  7. Hiraishi A., Ueda Y., Ishihara J., Mori T. 1996; Comparative lipoquinone analysis of influent sewage and activated sludge by high-performance liquid chromatography and photodiode array detection. J Gen Appl Microbiol 42:457–469 [View Article]
    [Google Scholar]
  8. Im W.-T., Jung H.-M., Cui Y.-S., Liu Q.-M., Zhang S.-L., Lee S.-T. 2005; Cultivation of the three hundreds of bacterial species from soil of a ginseng field and mining the novel lineage bacteria. In Proceedings of the International Meeting of the Federation of Korean Microbiological Societies, abstract A035 p. 169 Seoul: Federation of Korean Microbiological Societies;
    [Google Scholar]
  9. Kimura M. 1983 The Neutral Theory of Molecular Evolution Cambridge: Cambridge University Press; [View Article]
    [Google Scholar]
  10. Kouker G., Jaeger K.-E. 1987; Specific and sensitive plate assay for bacterial lipases. Appl Environ Microbiol 53:211–213[PubMed]
    [Google Scholar]
  11. Kumar S., Tamura K., Nei M. 2004; mega3: integrated software for molecular evolutionary genetics analysis and sequence alignment. Brief Bioinform 5:150–163 [View Article][PubMed]
    [Google Scholar]
  12. Mesbah M., Premachandran U., Whitman W. B. 1989; Precise measurement of the G+C content of deoxyribonucleic acid by high-performance liquid chromatography. Int J Syst Bacteriol 39:159–167 [View Article]
    [Google Scholar]
  13. Moore D. D., Dowhan D. 1995; Preparation and analysis of DNA. In Current Protocols in Molecular Biology pp. 2–11 Edited by Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. New York: Wiley;
    [Google Scholar]
  14. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  15. Schleifer K. H., Kandler O. 1972; Peptidoglycan types of bacterial cell walls and their taxonomic implications. Bacteriol Rev 36:407–477[PubMed]
    [Google Scholar]
  16. Steven B., Chen M. Q., Greer C. W., Whyte L. G., Niederberger T. D. 2008; Tumebacillus permanentifrigoris gen. nov., sp. nov., an aerobic, spore-forming bacterium isolated from Canadian high Arctic permafrost. Int J Syst Evol Microbiol 58:1497–1501 [View Article][PubMed]
    [Google Scholar]
  17. Swindell S. R., Plasterer T. N. 1997; seqman. Contig assembly. Methods Mol Biol 70:75–89[PubMed]
    [Google Scholar]
  18. Ten L. N., Im W.-T., Kim M.-K., Kang M.-S., Lee S.-T. 2004; Development of a plate technique for screening of polysaccharide-degrading microorganisms by using a mixture of insoluble chromogenic substrates. J Microbiol Methods 56:375–382 [View Article][PubMed]
    [Google Scholar]
  19. Ten L. N., Jung H.-M., Im W. T., Yoo S. A., Lee S.-T. 2008; Lysobacter daecheongensis sp. nov., isolated from sediment of stream near the Daechung dam in South Korea. J Microbiol 46:519–524 [View Article][PubMed]
    [Google Scholar]
  20. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882 [View Article][PubMed]
    [Google Scholar]
  21. Tschech A., Pfennig N. 1984; Growth yield increase linked to caffeate reduction in Acetobacterium woodii . Arch Microbiol 137:163–167 [View Article]
    [Google Scholar]
  22. Widdel F., Bak F. 1992; Gram-negative mesophilic sulfatereducing bacteria. In The Prokaryotes, 2nd edn. pp. 3352–3378 Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. New York: Springer; [CrossRef]
    [Google Scholar]
  23. Widdel F., Kohring G., Mayer F. 1983; Studies on dissimilatory sulfate-reducing bacteria that decompose fatty acids. III. Characterization of the filamentous gliding Desulfonema limicola gen. nov., sp. nov. and Desulfonema magnum sp. nov.. Arch Microbiol 134:286–294 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/ijsem/10.1099/ijs.0.023358-0
Loading
/content/journal/ijsem/10.1099/ijs.0.023358-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error